精英家教网 > 高中数学 > 题目详情
(本小题满分13分)如图甲,直角梯形中,,点分别在上,且,现将梯形沿折起,使平面与平面垂直(如图乙).

(Ⅰ)求证:平面
(Ⅱ)当的长为何值时,
二面角的大小为
(Ⅰ)见解析   (Ⅱ)
法一:(Ⅰ)MB//NC,MB平面DNC,NC平面DNC,

MB//平面DNC.
同理MA//平面DNC,又MAMB="M," 且MA,MB平面MAB.
.  (6分)
(Ⅱ)过N作NH交BC延长线于H,连HN,
平面AMND平面MNCB,DNMN,
DN平面MBCN,从而,
为二面角D-BC-N的平面角.                                      (9分)
由MB=4,BC=2,
.                           (10分)
由条件知:                 (13分)
解法二:如图,以点N为坐标原点,以NM,NC,ND所在直线分别作为轴,轴和轴,建立空间直角坐标系易得NC=3,MN=
,则.
(I).


与平面共面,又.     (6分)
(II)设平面DBC的法向量
,令,则 
. (8分)又平面NBC的法向量.  (9分)

即:   又    (13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在五棱锥P-ABCDE中,PA=AB=AE=4a,PB=PE=a,BC=DE=2a,∠EAB=∠ABC=∠DEA=90°.(1)若中点,求证:平面.
(2)求二面角A-PD-E的正弦值;(3)求点C到平面PDE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,ABCD是边长为2的正方形,ED⊥平面ABCDED=1,EFBDEFBD
(1)求证:BF∥平面ACE;(2)求二面角BAFC的大小;
(3)求点F到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)

(本题14分).如图所示,在正三棱柱ABC-A1B1C1中,
底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是
A1B1的中点.
(1)求证:A1B1//平面ABD.
(2)求证:
(3)求三棱锥C-ABE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.

正视图             侧视图           俯视图

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB和AB的中点.
(1)求证:FD∥平面ABC;
(2)求证:AF⊥BD;
(3) 求二面角B—FC—G的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,AD//BC,,当E、F分别在线段AD、BC上,且,AD=4,CB=6,AE=2,现将梯形ABCD沿EF折叠,使平面ABFE与平面EFCD垂直。
小题1:判断直线AD与BC是否共面,并证明你的结论;
小题2:当直线AC与平面EFCD所成角为多少时,二面角A—DC—E的大小是60°。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱台内,以小底为底面。大底面中心为顶点作一内接棱锥. 已知棱台小底面边长为b,大底面边长为a,并且棱台的侧面积与内接棱锥的侧面面积相等,求这个棱锥的高,并指出有解的条件.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体中,上的点、的中点.
(Ⅰ)求直线与平面所成角的正弦值;
 (Ⅱ)若直线//平面,试确定点的位置.

查看答案和解析>>

同步练习册答案