精英家教网 > 高中数学 > 题目详情
(本小题满分14分)

(本题14分).如图所示,在正三棱柱ABC-A1B1C1中,
底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是
A1B1的中点.
(1)求证:A1B1//平面ABD.
(2)求证:
(3)求三棱锥C-ABE的体积.
(Ⅰ)见解析  (Ⅱ) 见解析(Ⅲ)
(1)证明:在正三棱柱ABC-A1B1C1中,∵A1B1//AB,
AB在平面ABD内,A1B1不在平面ABD内,
∴A1B1//平面ABD.………………………………………5分
(2) 证明:取AB中点F,连接EF,CF,
则CF^AB,EF^AB……………………8分
……………………9分
…………10分
(3)解:  14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
(注意:在试题卷上作答无效)
四棱锥中,底面为矩形,侧面底面
(Ⅰ)证明:
(Ⅱ)设侧面为等边三角形,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,现将沿折线CD折成60°的二面角P—CD—A,设E,F,G分别是PD,PC,BC的中点。
(I)求证:PA//平面EFG;
(II)若M为线段CD上的一个动点,问当M在什么位置时,MF与平面EFG所成角最大。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图甲,直角梯形中,,点分别在上,且,现将梯形沿折起,使平面与平面垂直(如图乙).

(Ⅰ)求证:平面
(Ⅱ)当的长为何值时,
二面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积
(3)证明:直线BD平面PEG

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:正方体为棱
的中点.
(1)求证:
(2)求三棱锥的体积;
(3)求证:平面. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不同的平面,有下列命题:
①若,则;       ②若,则
③若,则;       ④若,则
其中真命题的个数是
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体
,求所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正
三角形,且平面PDC⊥底面ABCD,E为PC的中点。


 
        (I)求异面直线PA与DE所成的角;

        (II)求点D到面PAB的距离.

查看答案和解析>>

同步练习册答案