精英家教网 > 高中数学 > 题目详情
如图,四棱锥P—ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正
三角形,且平面PDC⊥底面ABCD,E为PC的中点。


 
        (I)求异面直线PA与DE所成的角;

        (II)求点D到面PAB的距离.
(Ⅰ)(Ⅱ)
(1)解法一:连结AC,BD交于点O,连结EO.
∵四边形ABCD为正方形,∴AO=CO,又∵PE=EC,∴PA∥EO,
∴∠DEO为异面直线PA与DE所成的角……………………3分
∵面PCD⊥面ABCD,AD⊥CD,∴AD⊥面PCD,∴AD⊥PD.
在Rt△PAD中,PD=AD=a,则


∴异面直线PA与DE的夹角为……………………6分
(2)取DC的中点M,AB的中点N,连PM、MN、PN.


 

∴D到面PAB的距离等于点M到
面PAB的距离.……7分
过M作MH⊥PN于H,
∵面PDC⊥面ABCD,PM⊥DC,
∴PM⊥面ABCD,∴PM⊥AB,
又∵AB⊥MN,PM∩MN=M,
∴AB⊥面PMN. ∴面PAB⊥面PMN,
∴MH⊥面PAB,
则MH就是点D到面PAB的距离.……10分


 
………………12分

解法二:如图取DC的中点O,连PO,
∵△PDC为正三角形,∴PO⊥DC.
又∵面PDC⊥面ABCD,∴PO⊥面ABCD.
如图建立空间直角坐标系

.………………………………3分
(1)E为PC中点, 


∴异面直线PA与DE所成的角为……………………6分
(2)可求
设面PAB的一个法向量为
  ①    . ②
由②得y=0,代入①得
…………………………9分
则D到面PAB的距离d等于在n上射影的绝对值


即点D到面PAB的距离等于………………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)

(本题14分).如图所示,在正三棱柱ABC-A1B1C1中,
底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是
A1B1的中点.
(1)求证:A1B1//平面ABD.
(2)求证:
(3)求三棱锥C-ABE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.

正视图             侧视图           俯视图

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.
(Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值;
(Ⅲ)设过直线AD且与BC平行的平面为,求点B到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB和AB的中点.
(1)求证:FD∥平面ABC;
(2)求证:AF⊥BD;
(3) 求二面角B—FC—G的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知:在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=AB=2,E,F分别是AB与PD的中点.
(1)求证:PC⊥BD;
(2)求证:AF//平面PEC;
(3)求二面角P—EC—D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱ABCA1B1C1中,AB=BC=BB1DAC的中点,


 
  (1)求证:B1C∥平面A1BD

  (2)若AC1⊥平面A1BD,二面角BA1C1D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图正方体ABCD-中,E、F、G分别是、AB、BC的中点.
  (1)证明:⊥EG;
  (2)证明:⊥平面AEG;
  (3)求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

mn是两条不同的直线,是两个不同的平面,给出下列四个命题: 
①若,则;           ②若,则
③若,则; ④若,则.
其中正确命题的个数是                         (  )    
A.1B.2 C.3D.4

查看答案和解析>>

同步练习册答案