分析 由目标函数z=x+3y的最大值为8,我们可以画出满足条件的平面区域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数k的方程组,消参后即可得到k的取值.
解答 解:画出满足条件的平面区域,如图示:
,
由$\left\{\begin{array}{l}{y=x}\\{x+y=k}\end{array}\right.$,解得A($\frac{k}{2}$,$\frac{k}{2}$),
将z=x+2y转化为:y=-$\frac{1}{2}$x+$\frac{z}{2}$,
显然直线过A($\frac{k}{2}$,$\frac{k}{2}$)时,z最大,
z的最大值是:$\frac{k}{2}$+k=8,解得:k=$\frac{16}{3}$,
故答案为:$\frac{16}{3}$.
点评 如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.
科目:高中数学 来源: 题型:选择题
| A. | f(x)=Asin(4x+$\frac{π}{6}$) | B. | f(x)=2sin(2x+$\frac{π}{3}$)+2 | C. | f(x)=sin(4x+$\frac{π}{3}$)+2 | D. | f(x)=2sin(4x+$\frac{π}{6}$)+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{14}$ | B. | $\frac{3}{8}$ | C. | $\frac{27}{56}$ | D. | $\frac{55}{56}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,4) | B. | (2,3) | C. | (1,3) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{π}}{3}$ | B. | $\frac{\sqrt{π}}{2}$ | C. | $\frac{\sqrt{3π}}{3}$ | D. | $\frac{\sqrt{2π}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com