精英家教网 > 高中数学 > 题目详情
10.若方程x2+(1-k)x-2(k+1)=0的一个根在区间(2,3)内,则实数k的取值范围是(  )
A.(3,4)B.(2,3)C.(1,3)D.(1,2)

分析 若方程x2+(1-k)x-2(k+1)=0有两相等的实根,则x=-2,不在区间(2,3)内,
令f(x)=x2+(1-k)x-2(k+1),若方程x2+(1-k)x-2(k+1)=0有两不相等的实根,且一个根在区间(2,3)内,则f(2)f(3)<0,进而得到答案.

解答 解:若方程x2+(1-k)x-2(k+1)=0有两相等的实根,
则△=(1-k)2+8(k+1)=0,解得:k=-3,
此时x=-2,不在区间(2,3)内,
令f(x)=x2+(1-k)x-2(k+1),
若方程x2+(1-k)x-2(k+1)=0有两不相等的实根,且一个根在区间(2,3)内,
则f(2)f(3)<0,即(4-4k)(10-5k)<0,
解得:k∈(1,2),
故选:D.

点评 本题考查的知识点是一元二次方程根的分布与系数的关系,函数的零点与对应方程根的关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知正整数a,b,c满足a<b<c,若函数φ(x)=|x-a|+|x-b|+|x-c|的图象与函数y=-2x+2015的图象有且仅有一个公共点,则正整数c的最小值是1008.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是一个程序框图,则输出的S的值是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x,y满足$\left\{\begin{array}{l}x≥0\\ y≤x\\ x+y≤k.\end{array}\right.$(k为常数),若z=x+2y最大值为8,则k=$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图是根据某行业网站统计的某一年1月到12月(共12个月)的山地自行车销售量(1k代表1000辆)折线图,其中横轴代表月份,纵轴代表销售量,由折线图提供的数据回答下列问题:
(Ⅰ)在一年中随机取一个月的销售量,估计销售量不足200k的概率;
(Ⅱ)在一年中随机取连续两个月的销售量,估计这连续两个月销售量递增(如2月到3月递增)的概率;
(Ⅲ)根据折线图,估计年平均销售量在哪两条相邻水平平行线线之间(只写出结果,不要过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x2-3a2,g(x)=(2a+1)x.
(1)若不等式f(x)<g(x)的解集中有且仅有一个整数,求a的取值范围.
(2)若|f(x)-g(x)|≤4a在x∈[1,4a]恒成立,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从拇指开始数到小指,然后折回来接着数,到拇指后再折回去数(折回去数时小拇指与拇指都不重复计数),问第1000根手指是(  )
A.拇指B.食指C.中指D.小指

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点E(-λ,0)(λ≥0),动点A,B均在抛物线C:y2=2px(p>0)上,若$\overrightarrow{EA}$•$\overrightarrow{EB}$的最小值为0,则λ的值为(  )
A.$\frac{p}{2}$B.0C.pD.2p

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在三角形ABC中,如果(a+b+c)(b+c-a)=3bc,那么A等于60°.

查看答案和解析>>

同步练习册答案