精英家教网 > 高中数学 > 题目详情
计算:(0.16)sin30°-log2
32
9
-log481+(sin135°)2-(tan1)0
考点:对数的运算性质
专题:函数的性质及应用
分析:利用指数与对数的运算法则即可得出.
解答: 解:原式=(0.4)
1
2
-log2
32
9
-log29+(
2
2
)2-1

=
2
5
-log2(
32
9
×9)
+
1
2
-1
=-
1
10
-5
=-
51
10
点评:本题考查了指数与对数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三角形的两边所在直线方程分别为x+y-1=0,x+1=0,第三边中点为(-
5
2
1
2
),则第三条边所在直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若cosα=
3
2
,且α的终边过点P(x,2),则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列算式正确的是(  )
A、log2(3π)=log23+log2π
B、
6(-8)2
=
3-8
=-2
C、
lg6
lg3
=2
D、5
3
2
=53-2=5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条平行直线l1
3
x-y+1=0与l2
3
-y+3=0.
(1)若直线m经过点(
3
,4),且被l1、l2所截得的线段长为2,求直线m的方程;
(2)若直线n与l1、l2都垂直,且与坐标轴构成的三角形的面积是2
3
,求直线n的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=-3x+2与直线y=ax+b平行,求a,b满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

过以AB为直径的圆上C点作直线交圆于E点,交AB延长线于D点,过C点作圆的切线交AD于F点,交AE延长线于G点,且GA=GF.
(Ⅰ)求证CA=CD;
(Ⅱ)设H为AD的中点,求证BH•BA=BF•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,若A(-1,-1,2),B(1,2,-1),则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是正项数列{an}的前n项和且n∈N*,Sn=
1
4
an2+
1
2
an-
3
4
,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案