【题目】2002年北京国际数学家大会会标,是以中国古代数学家赵爽的弦图为基础而设计的,弦图用四个全等的直角三角形与一个小正方形拼成的一个大正方形
如图
,若大、小正方形的面积分别为25和1,直角三角形中较大锐角为
,则
等于
![]()
![]()
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】在△ABC中,已知点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上,求:
(1)顶点C的坐标;
(2)直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,且过点P(3,2).
(1)求椭圆C`的标准方程;
(2)设与直线OP(O为坐标原点)平行的直线
交椭圆C于A,B两点,求证:直线PA,PB与
轴围成一个等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.
(1)确定a,b的值;
(2)若c=3,判断f(x)的单调性;
(3)若f(x)有极值,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点
为极点,
轴的正半轴为极轴,且两个坐标系取相等的长度单位建立坐标系.已知直线
的极坐标方程为
,曲线
的参数方程为
(
为参数).
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)直线
上有一点
,设直线
与曲线
相交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若在其定义域内存在实数
,使得
成立,则称
有“※点”
。
(1)判断函数
在
上是否有“※点”。并说明理由;
(2)若函数
在
上有“※点”,求正实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(3x+
).
(1)求f(x)的单调递增区间;
(2)若α是第二象限角,f(
)=
cos(α+
)cos2α,求cosα﹣sinα的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com