精英家教网 > 高中数学 > 题目详情

若P=,Q= (a≥0),则P,Q的大小关系(  )

A.P>Q B.P=Q

C.P<Q D.由a取值决定

 

C

【解析】假设P<Q,∵要证P<Q,只要证P2<Q2,

只要证:2a+7+2<2a+7+2

只要证:a2+7a<a2+7a+12,

只要证:0<12,

∵0<12成立,∴P<Q成立.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题

在正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,其中有可能成立的个数为(  )

A.4 B.3 C.2 D.1

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-2空间几何体的表面积和体积(解析版) 题型:选择题

一个几何体的三视图如图所示,其中俯视图与侧视图均为半径是2的圆,则这个几何体的表面积是(  )

A.16π B.14π C.12π D.8π

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:选择题

若a,b∈R,则下面四个式子中恒成立的是(  )

A.lg(1+a2)>0 B.a2+b2≥2(a-b-1)

C.a2+3ab>2b2 D. <

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:选择题

用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为(  )

A.a,b,c中至少有两个偶数

B.a,b,c中至少有两个偶数或都是奇数

C.a,b,c都是奇数

D.a,b,c都是偶数

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-5合情推理与演绎推理(解析版) 题型:解答题

在锐角三角形ABC中,求证:sinA+sinB+sinC>cosA+cosB+cosC.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-5合情推理与演绎推理(解析版) 题型:选择题

三段论推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是(  )

A.① B.② C.③ D.①和②

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-2一元二次不等式及其解法(解析版) 题型:解答题

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.

(1)求证:函数y=f(x)必有两个不同的零点;

(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围;

(3)是否存在这样的实数a,b,c及t使得函数y=f(x)在[-2,1]上的值域为[-6,12]?若存在,求出t的值及函数y=f(x)的解析式;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-5数列的综合应用(解析版) 题型:选择题

已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )

A.12 B.14 C.16 D.18

 

查看答案和解析>>

同步练习册答案