精英家教网 > 高中数学 > 题目详情

在锐角三角形ABC中,求证:sinA+sinB+sinC>cosA+cosB+cosC.

 

见解析

【解析】证明:∵△ABC为锐角三角形,

∴A+B>,∴A>-B,

∵y=sinx在(0,)上是增函数,

∴sinA>sin(-B)=cosB,

同理可得sinB>cosC,sinC>cosA,

∴sinA+sinB+sinC>cosA+cosB+cosC.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:填空题

对于平面M与平面N,有下列条件:①M,N都垂直于平面Q;②M、N都平行于平面Q;③M内不共线的三点到N的距离相等;④l,m为两条平行直线,且l∥M,m∥N;⑤l,m是异面直线,且l∥M,m∥M;l∥N,m∥N,则可判定平面M与平面N平行的条件是________(填正确结论的序号).

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-7数学归纳法(解析版) 题型:解答题

用数学归纳法证明42n+1+3n+2能被13整除,其中n∈N*.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:填空题

若a,b,c是不全相等的正数,给出下列判断:

①(a-b)2+(b-c)2+(c-a)2≠0;

②a>b与a<b及a=b中至少有一个成立;

③a≠c,b≠c,a≠b不能同时成立.

其中判断正确的是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:选择题

若P=,Q= (a≥0),则P,Q的大小关系(  )

A.P>Q B.P=Q

C.P<Q D.由a取值决定

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-5合情推理与演绎推理(解析版) 题型:选择题

观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=(  )

A. 28 B. 76 C. 123 D. 199

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-4基本不等式(解析版) 题型:解答题

已知lg(3x)+lgy=lg(x+y+1).

(1)求xy的最小值;

(2)求x+y的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-2一元二次不等式及其解法(解析版) 题型:解答题

设a≠0,对于函数f(x)=log3(ax2-x+a),

(1)若函数f(x)的定义域为R,求实数a的取值范围;

(2)若函数f(x)的值域为R,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-4数列求和(解析版) 题型:填空题

在数列{an}中,a1=2,an+an+1=1(n∈N*),设Sn为数列{an}的前n项和,则S2007-2S2006+S2005的值为________.

 

查看答案和解析>>

同步练习册答案