精英家教网 > 高中数学 > 题目详情

【题目】在四棱柱 中,底面 是正方形,且

(1)求证:
(2)若动点 在棱 上,试确定点 的位置,使得直线 与平面 所成角的正弦值为

【答案】
(1)证明:连接

因为
所以 均为正三角形,
于是
的交点为 ,连接 ,则
又四边形 是正方形,所以
,所以 平面
平面 ,所以
,所以
(2)解:由 ,及 ,知
于是 ,从而
结合 ,得 底面
所以 两两垂直.
如图,以点 为坐标原点, 的方向为 轴的正方向,建立空间直角坐标系


,易求得
),
,即
所以
设平面 的一个法向量为
,得
设直线 与平面 所成角为 ,则

解得 (舍去),
故答案为:当 的中点时,直线 与平面 所成角的正弦值为
【解析】(1)通过线面垂直证明线线垂直.
(2)建立空间直角坐标系,设点E的坐标,由平面法向量计算线面角求得点E的坐标,从而确定点E的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b,c,d都是常数,a>b,c>d.若f(x)=2 017-(x-a)(x-b)的零点为c,d,则下列不等式正确的是( )
A.a>c>b>d
B.a>b>c>d
C.c>d>a>b
D.c>a>b>d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={3,a2},集合B={0,b,1﹣a},且A∩B={1},则A∪B=(
A.{0,1,3}
B.{1,2,4}
C.{0,1,2,3}
D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x<2},B={x|3﹣2x>0},则(  )
A.A∩B={x|x< }
B.A∩B=?
C.A∪B={x|x< }
D.AUB=R

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆 经过点 ,并且与圆 相切.
(1)求点P的轨迹C的方程;
(2)设 为轨迹C内的一个动点,过点 且斜率为 的直线 交轨迹C于A,B两点,当k为何值时? 是与m无关的定值,并求出该值定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20 , 接下来的两项是20 , 21 , 再接下来的三项是20 , 21 , 22 , 依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是(  )
A.440
B.330
C.220
D.110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数f(x)在区间(-∞,0]上单调递减,则满足f(2x-1)< 的x的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为椭圆与双曲线的公共焦点, 是它们的一个公共点,且 ,则该椭圆与双曲线的离心率的积的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-4+ ,x∈(0,4),当x=a时,f(x)取得最小值b,则函数g(x)=a|x+b|的图象为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案