精英家教网 > 高中数学 > 题目详情
9.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应:
X24568
y3040605070
(1)求回归直线方程.
(2)回归直线必经过的一点是哪一点?

分析 (1)先做出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法做出线性回归方程的系数,再求出a的值,即可得到线性回归方程.
(2)根据线性回归方程一定过这组数据的样本中心点,得到线性回归方程表示的直线必经过($\overline{x}$,$\overline{y}$),得到结果.

解答 解:(1)∵$\overline{x}$=$\frac{2+4+5+6+8}{5}$=5,$\overline{y}$=$\frac{30+40+60+50+70}{5}$=50,
∴b=$\frac{2×30+4×40+5×60+6×50+8×70-5×5×50}{4+16+25+36+64-5×25}$=6.5
∴a=$\overline{y}$-b$\overline{x}$=50-6.5×5=17.5,
∴回归直线方程为y=6.5x+17.5.
(2)∵线性回归方程一定过这组数据的样本中心点,
∴线性回归方程表示的直线必经过($\overline{x}$,$\overline{y}$),
故此回归直线必经过的一点是(50,6.5).

点评 本题考查线性回归方程的求法和应用,本题解题的关键是看出这组变量是线性相关的,进而正确运算求出线性回归方程的系数,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x(lnx-ax)(a∈R),g(x)=f′(x).
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x-y-1=0平行,求实数a的值;
(2)若函数F(x)=g(x)+$\frac{1}{2}$x2有两个极值点x1,x2,且x1<x2,求证:f(x2)-1<f(x1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x2-bx+alnx.
(Ⅰ) 若b=2,函数f(x)有两个极值点x1,x2,且x1<x2,求实数a的取值范围;
(Ⅱ) 在(Ⅰ)的条件下,证明:f(x2)>-$\frac{3+2ln2}{4}$;
(Ⅲ) 若对任意b∈[1,2],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在(0,+∞)上的函数f(x)满足f(x)>0,且2f(x)<xf′(x)<3f(x)对x∈(0,+∞)恒成立,其中f′(x)为f(x)的导函数,则(  )
A.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$B.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$C.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{3}$D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在(0,+∞)上的函数f(x)满足f(x)>0,f'(x)为f(x)的导函数,且2f(x)<xf'(x)<3f(x)对x∈(0,+∞)恒成立,则$\frac{f(2)}{f(3)}$的取值范围是($\frac{8}{27}$,$\frac{4}{9}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数 f(x)=$\left\{\begin{array}{l}{-x+6,x≤2}\\{3+lo{g}_{a}x,x>2}\end{array}\right.$(a>0且a≠1)
(1)若a=2,解不等式f(x)≤5;
(2)若函数f(x)的值域是[4,+∞),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求y=$\frac{x-2}{(x-1)^{2}}$(x>2)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若以连续掷两枚骰子,分别得到的点数m,n作为点P的坐标,则点P落在圆x2+y2=16外的概率是$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直线L过点M(2,1),且分别与X,Y正半轴轴交于A,B两点.O为原点,
(1)求△AOB面积最小时直线L的方程
(2)|MA|•|MB|取最小值时L的方程.

查看答案和解析>>

同步练习册答案