精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=x2-bx+alnx.
(Ⅰ) 若b=2,函数f(x)有两个极值点x1,x2,且x1<x2,求实数a的取值范围;
(Ⅱ) 在(Ⅰ)的条件下,证明:f(x2)>-$\frac{3+2ln2}{4}$;
(Ⅲ) 若对任意b∈[1,2],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.

分析 (Ⅰ)求出f(x)的导数,结合二次函数的性质求出a的范围即可;
(Ⅱ)求出f(x2)=${{x}_{2}}^{2}$-2x2+(2x2-2${{x}_{2}}^{2}$)lnx2,令F(t)=t2-2t+(2t-2t2)lnt,($\frac{1}{2}$<t<1),得到F(t)=2(1-2t)lnt,根据函数的单调性求出F(t)>F($\frac{1}{2}$),从而证出结论;
(Ⅲ)令g(b)=-xb+x2+alnx,b∈[1,2],得到在x∈(1,e)上g(b)max=g(1)=-x+x2+alnx<0有解,令h(x)=-x+x2+alnx,通过讨论a的范围,求出函数的单调性,从而确定a的范围即可.

解答 解:(Ⅰ)由已知,b=2时,f(x)=x2-2x+alnx,f(x)的定义域为(0,+∞),
求导数得:f′(x)=$\frac{{2x}^{2}-2x+a}{x}$,
∵f(x)有两个极值点x1,x2,f′(x)=0有两个不同的正根x1,x2
故2x2-2x+a=0的判别式△=4-8a>0,即a<$\frac{1}{2}$,
且x1+x2=1,x1•x2=$\frac{a}{2}$>0,所以a的取值范围为(0,$\frac{1}{2}$);
(Ⅱ)由(Ⅰ)得,$\frac{1}{2}$<x2<1且f′(x2)=0,得a=2x2-2${{x}_{2}}^{2}$,
∴f(x2)=${{x}_{2}}^{2}$-2x2+(2x2-2${{x}_{2}}^{2}$)lnx2
令F(t)=t2-2t+(2t-2t2)lnt,($\frac{1}{2}$<t<1),
则F(t)=2(1-2t)lnt,
当t∈($\frac{1}{2}$,1)时,F′(t)>0,∴F(t)在($\frac{1}{2}$,1)上是增函数
∴F(t)>F($\frac{1}{2}$)=$\frac{-3-2ln2}{4}$,
∴f(x2)>-$\frac{3+2ln2}{4}$;
(Ⅲ)令g(b)=-xb+x2+alnx,b∈[1,2],
由于x∈(1,e),所以g(b)为关于b的递减的一次函数,
根据题意,对任意b∈[1,2],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,
则x∈(1,e)上g(b)max=g(1)=-x+x2+alnx<0有解,
令h(x)=-x+x2+alnx,则只需存在x0∈(1,e)使得h(x0)<0即可,
由于h′(x)=$\frac{{2x}^{2}-x+a}{x}$,令ω(x)=2x2-x+a,x∈(1,e),ω′(x)=4x-1>0,
∴ω(x)在(1,e)上单调递增,∴ω(x)>ω(1)=1+a,
①当1+a≥0,即a≥-1时,ω(x)>0,∴h′(x)>0,
∴h(x)在(1,e)上是增函数,∴h(x)>h(1)=0,不符合题意,
②当1+a<0,即a<-1时,ω(1)=1+a<0,ω(e)=2e2-e+a,
(ⅰ)若ω(e)<0,即a≤2e2-e<-1时,在x∈(1,e)上ω(x)>0恒成立
即h′(x)<0恒成立,∴h(x)在(1,e)上单调递减,
∴存在x0∈(1,e),使得h(x0)<h(1)=0,符合题意,
(ⅱ)若ω(e)>0,即2e2-e<a<-1时,在(1,e)上存在实数m,使得ω(m)=0,
∴在(1,m)上,ω(x)<0恒成立,即h′(x)<0恒成立
∴h(x)在(1,e)上单调递减,
∴存在x0∈(1,e),使得h(x0)<h(1)=0,符合题意,
综上所述,当a<-1时,对任意b∈[1,2],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查不等式的证明,分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=exlnx在点(1,f(1))处的切线方程是(  )
A.y=2e(x-1)B.y=ex-1C.y=e(x-1)D.y=x-e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面几何中,已知三角形ABC的面积为S,周长为L,求三角形内切圆半径时,可用如下方法,设圆O为内切圆圆心,则S=S△OAB+S△OBC+S△OAC=$\frac{1}{2}$r|AB|+$\frac{1}{2}$r|BC|+$\frac{1}{2}$r|AC|=$\frac{1}{2}$rL,∴r=$\frac{2S}{L}$
类比此类方法,已知三棱锥的体积为V,表面积为S,各棱长之和为L,则内切球半径r为(  )
A.$\frac{2V}{S}$B.$\frac{2V}{L}$C.$\frac{3V}{S}$D.$\frac{3V}{L}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx+$\frac{1}{x}$+ax-1(a∈R)
(Ⅰ)当a≥0时,试讨论f(x)的极值点个数,并说明理由;
(Ⅱ)求证:ln(n+1)>$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n+1}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.三棱锥A-PBC中,D是线段PC上一点,且AD⊥面BPC,AC=2,BC=3,AB=$\sqrt{7}$,E是BC上一点,且CE=1.
(1)求证:BC⊥面ADE;
(2)若∠ACP和∠BCP互余,求直线AB和面BPC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A、B、C是半径为1的球面上三个定点,且AB=AC=BC=1,高为$\frac{{\sqrt{6}}}{2}$的三棱锥P-ABC的顶点P位于同一球面上,则动点P的轨迹所围成的平面区域的面积是(  )
A.$\frac{1}{6}$πB.$\frac{1}{3}$πC.$\frac{1}{2}$πD.$\frac{5}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a,b是正实数,且a+b=2,则$\frac{1}{2a}$+$\frac{1}{2b}$的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应:
X24568
y3040605070
(1)求回归直线方程.
(2)回归直线必经过的一点是哪一点?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在二项式($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n的展开式中,只有第五项的二项式系数最大,把展开式中所有的项重新排成一列,则有理项不相邻的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{5}{12}$

查看答案和解析>>

同步练习册答案