精英家教网 > 高中数学 > 题目详情
10.函数f(x)=exlnx在点(1,f(1))处的切线方程是(  )
A.y=2e(x-1)B.y=ex-1C.y=e(x-1)D.y=x-e

分析 先求出函数f(x)=exlnx的导数,再利用导数求出切线的斜率,再求出切点坐标,最后用点斜式方程即可得出答案.

解答 解:函数f(x)=exlnx的导数为f′(x)=exlnx+ex$•\frac{1}{x}$,
∴切线的斜率k=f′(1)=e,
令f(x)=exlnx中x=1,得f(1)=0,
∴切点坐标为(1,0),
∴切线方程为y-0=e(x-1),即y=e(x-1).
故选:C.

点评 本题考查了利用导数研究曲线上某点切线方程,考查导数的几何意义,正确求导和运用点斜式方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图:在三棱锥S-ABC中,SA⊥面ABC,SA=1,△ABC是边长为2的等边三角形,则二面角S-BC-A的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图l是某县参加2016年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1、A2
…、Am(如A2表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图l中身高在一定范围内学生人数的一个算法流程图.根据流程图中输出的S值是1850.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.(实验班做)四面体的顶点和各棱的中点共10个点,在其中取4个点,则这四个点不共面的概率为(  )
A.$\frac{5}{7}$B.$\frac{7}{10}$C.$\frac{47}{70}$D.$\frac{24}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.棱长为1正方体ABCD-A1B1C1D1中截去三棱锥B1-A1BC1,剩下几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|$=$|{\overrightarrow b}|$=3,且$\overrightarrow a$与$\overrightarrow b$的夹角为120°,求$|{\overrightarrow a+\overrightarrow b}|$,$|{2\overrightarrow a-\overrightarrow b}|$;
(2)已知非零向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a+3\overrightarrow b$与$7\overrightarrow a-5\overrightarrow b$互相垂直,$\overrightarrow a-4\overrightarrow b$与$\overrightarrow{7a}-2\overrightarrow b$互相垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,a2+a3=5,a1=4,则公差d等于(  )
A.-1B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x(lnx-ax)(a∈R),g(x)=f′(x).
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x-y-1=0平行,求实数a的值;
(2)若函数F(x)=g(x)+$\frac{1}{2}$x2有两个极值点x1,x2,且x1<x2,求证:f(x2)-1<f(x1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x2-bx+alnx.
(Ⅰ) 若b=2,函数f(x)有两个极值点x1,x2,且x1<x2,求实数a的取值范围;
(Ⅱ) 在(Ⅰ)的条件下,证明:f(x2)>-$\frac{3+2ln2}{4}$;
(Ⅲ) 若对任意b∈[1,2],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案