精英家教网 > 高中数学 > 题目详情
20.如图:在三棱锥S-ABC中,SA⊥面ABC,SA=1,△ABC是边长为2的等边三角形,则二面角S-BC-A的大小为30°.

分析 取BC中点O,连结SO、AO,推导出SO⊥BC,AO⊥BC,从而∠SOA是二面角S-BC-A的平面角,由此能求出二面角S-BC-A的大小.

解答 解:取BC中点O,连结SO、AO,
∵在三棱锥S-ABC中,SA⊥面ABC,SA=1,
△ABC是边长为2的等边三角形,
∴SB=SC=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,AO=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∴SO⊥BC,AO⊥BC,
∴∠SOA是二面角S-BC-A的平面角,
∴tan∠SOA=$\frac{SA}{AO}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
∴∠SOA=30°.
故答案为:30°.

点评 本题考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的实轴长是虚轴长的一半,则该双曲线的方程为(  )
A.5x2-$\frac{5}{4}$y2=1B.$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{4}$=1D.5x2-$\frac{4}{5}$y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin45°cos105°+sin45°sin15°=(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.
(1)求角C;
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为梯形,AB∥DC,∠ABC=90°,且PA=AB=BC=$\frac{1}{2}$DC=1,点E在线段PB上,且EB=$\frac{1}{2}$PE.试用向量法解决如下问题:
(1)求证:PD∥平面AEC.
(2)求锐二面角A-CE-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等比数列{an}的前n项和Sn=a•2n+a-2,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\left\{\begin{array}{l}{e^x}-1\\ lnx\end{array}\right.$$\begin{array}{l}(x<1)\\(x≥1)\end{array}$,那么f(ln2)的值是(  )
A.0B.1C.ln(ln2)D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,斜三棱柱ABC-A1B1C1,面AA1B1B⊥面ABC,且∠A1AB=60°,AA1=2,△ABC为边长为2的等边三角形,G为△ABC的重心,取BC中点F,连接B1F与BC1交于E点:
(1)求证:GE∥面AA1B1B;  
(2)求三棱锥B-B1EA的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=exlnx在点(1,f(1))处的切线方程是(  )
A.y=2e(x-1)B.y=ex-1C.y=e(x-1)D.y=x-e

查看答案和解析>>

同步练习册答案