【题目】已知函数,,
(1)求不等式的解集;
(2)若对一切,均有成立,求实数的取值范围.
【答案】(1){x|-2<x<4}.(2)(-∞,2].
【解析】
(1)解一元二次不等式得不等式g(x)<0的解集,(2)先化简不等式,利用变量分离法得,转化求函数最小值,根据,利用基本不等式求最值,即得实数m的取值范围.
解:(1)g(x)=2x2-4x-16<0,
∴(2x+4)(x-4)<0,∴-2<x<4,
∴不等式g(x)<0的解集为{x|-2<x<4}.
(2)∵f(x)=x2-2x-8.
当x>2时,f(x)≥(m+2)x-m-15恒成立,
∴x2-2x-8≥(m+2)x-m-15,
即x2-4x+7≥m(x-1).
∴对一切x>2,均有不等式成立.
而=(x-1)+-2
≥2-2=2(当x=3时等号成立).
∴实数m的取值范围是(-∞,2].
科目:高中数学 来源: 题型:
【题目】已知关于x的二次函数f(x)=x2+(2t-1)x+1-2t.
(1)求证:对于任意t∈R,方程f(x)=1必有实数根;
(2)若<t<,求证:方程f(x)=0在区间(-1,0)及内各有一个实数根.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,
求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 在平行四边形ABCD中,A(1,1),=(6,0),点M是线段AB的中点,线段CM与BD交于点P.(1) 若=(3,5),求点C的坐标;(2) 当||=||时,求点P的轨迹.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设Sn为数列{an}的前n项的和,且Sn = (an -1)(n∈N*), 数列{bn }的通项公式bn = 4n+5.
①求证:数列{an }是等比数列;
②若d∈{a1 ,a2 ,a3 ,……}∩{b1 ,b2 ,b3 ,……},则称d为数列{an }和{bn }的公共项,按它们在原数列中的先后顺序排成一个新的数列{dn },求数列{dn }的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知:“直线与圆相交”; :“有一正根和一负根”.若为真, 为真,求的取值范围.
(2)已知椭圆: 与圆: ,双曲线与椭圆有相同的焦点,它的两条渐近线恰好与圆相切.求双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x|x|+bx+c,给出下列命题:①b=0,c>0时,方程f(x)=0只有一个实数根;②c=0时,y=f(x)是奇函数;③方程f(x)=0至多有两个实根.上述三个命题中所有正确命题的序号为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 且Sn=n2﹣4n﹣5
(1)求数列{an}的通项公式;
(2)设bn=|an|,数列{bn}的前n项和为Tn, 求Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com