精英家教网 > 高中数学 > 题目详情
17.已知棱长为2正方体ABCD-A1B1C1D1,点P是棱DD1的中点;
(1)求证:$\overrightarrow{D{B_1}}⊥$$\overrightarrow{AC}$
(2)求平面A1BD与平面C1BD夹角的余弦值.

分析 (1)以D为原点,DA、DC、DD1为x,y,z轴建立空间直角坐标系,利用向量法能证明DB1⊥AC.
(2)求出平面A1BD的法向量和平面C1BD的法向量,利用向量法能求出平面A1BD与平面C1BD夹角的余弦值.

解答 证明:(1)以D为原点,DA、DC、DD1为x,y,z轴建立空间直角坐标系,
由棱长为2,得A(2,0,0),B(2,2,0),C(0,2,0),
D(0,0,0)A1(2,0,2),B1(2,2,2),C1(0,2,2),D1(0,0,2),
∴$\overrightarrow{D{B_1}}=({2,2,2})$,$\overrightarrow{A{C_{\;}}}=({-2,2,0})$
∴$\overrightarrow{D{B_1}}•\overrightarrow{AC}=-4+4+0=0$,
∴$\overrightarrow{D{B_1}}⊥\overrightarrow{AC}$,∴DB1⊥AC.
解:(2)设平面A1BD的法向量为$\overrightarrow{n_1}=({{x_1},{y_1},{z_1}})$,
$\overrightarrow{D{A_1}}=(2,0,2)$,$\overrightarrow{DB}=(2,2,0)$
由$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{D{A}_{1}}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{DB}=0}\end{array}\right.$,得$\left\{\begin{array}{l}2{x_1}+2{z_1}=0\\ 2{x_1}+2{y_1}=0\end{array}\right.$,取x1=1,得$\overrightarrow{n_1}=({1,-1,-1})$
设平面C1BD的法向量为$\overrightarrow{n_2}=({{x_2},{y_2},{z_2}})$,$\overrightarrow{D{C_1}}=(0,2,2)$,$\overrightarrow{DB}=(2,2,0)$
由$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{D{C}_{1}}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{DB}=0}\end{array}\right.$,得$\left\{\begin{array}{l}2{y_2}+2{z_2}=0\\ 2{x_2}+2{y_2}=0\end{array}\right.$,取x2=1,得$\overrightarrow{n_2}=({1,-1,1})$
记求平面A1BD与平面C1BD夹角为θ,
则$cosθ=|{\frac{{{n_1}•{n_2}}}{{|{n_1}|•|{n_2}|}}}|=\frac{1+1-1}{{\sqrt{3•\sqrt{3}}}}=\frac{1}{3}$,
∴平面A1BD与平面C1BD夹角的余弦值为$\frac{1}{3}$.

点评 本题考查异面直线垂直的证明,考查面面夹角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,曲线C1:x2+2y2=2,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρ=\frac{4}{{\sqrt{2}sinθ+cosθ}}$.
(Ⅰ)写出曲线C1的参数方程,曲线C2的直角坐标方程;
(Ⅱ)设M是曲线C1上一点,N是曲线C2上一点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知扇形的半径长为2,面积为4,则该扇形圆心角所对的弧长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.以下有四种说法,其中正确说法的个数为(  )
(1)“m是实数”是“m是有理数”的充分不必要条件;
(2)“a>b”是“a2>b2”的充要条件;
(3)“x=3”是“x2-2x-3=0”的必要不充分条件;
(4)命题“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1≤0”
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,函数$f(x)=\sqrt{1-{2^x}}$的定义域为M,则∁UM=(  )
A.(-∞,0]B.(0,+∞)C.(-∞,0)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足$\left\{\begin{array}{l}{2x-y-2<0}\\{x-2y+2>0}\\{x+y+1>0}\end{array}\right.$,则z=$\frac{y}{x-3}$的范围为(  )
A.(-1,$\frac{1}{2}$)B.(-1,1)C.(-2,$\frac{1}{2}$)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点A(8,$8\sqrt{2}$)在抛物线y2=4px上,且点A到该抛物线的焦点F的距离为10,则焦点F到该抛物线的准线的距离为(  )
A.10B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果一条直线与一个平面平行,那么就称此直线与平面构成一个“平行线面对”,在正方体ABCD-A1B1C1D1中,由任意两条棱的中点确定的直线与平面ACC1A1构成的“平行线面对”的个数是(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是(  )
A.①②③B.②③C.①②④D.②④

查看答案和解析>>

同步练习册答案