精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行.
①求函数的单调区间;
②求函数的极大值与极小值的差;
③当x∈[1,3]时,f(x)>1-4c2恒成立,求实数c的取值范围.
分析:①先对函数进行求导,根据函数f(x)在x=2取得极值,说明导函数在x=2时值为0,再根据其图象在x=1处的切线斜率为-3,列出方程组即可求出a、b的值,进而可以求出函数的单调区间;
②根据①的单调性,可以得出函数的极大值为f(0)=c,极小值为f(2)=c-4,即可得出函数的极大值与极小值的差;
③可以求出函数在闭区间∈[1,3]上的最小值,这个最小值要大于1-4c2,解不等式可以得出实数c的取值范围.
解答:解:①首先f′(x)=3x2+6ax+3b,
因为函数f(x)在x=2取得极值,所以f′(2)=3•22+6a•2+3b=0
即4a+b+4=0…(i)
其次,因为图象在x=1处的切线与直线6x+2y+5=0平行
所以f′(1)=3•12+6a•1+3b=-3
即2a+b+2=0…(ii)
联解(i)、(ii)可得a=-1,b=0
所以:f′(x)=3x2-6x=3x(x-2)
当f′(x)>0时,x<0或x>2;当f′(x)<0时,0<x<2
∴函数的单调增区间是 (-∞,0)和(2,+∞);函数的单调减区间是(0,2)
②由①得,函数的表达式为(x)=x3-3x2+c,
因此求出函数的极大值为f(0)=c,极小值为f(2)=c-4
故函数的极大值与极小值的差为c-(c-4)=4
③f(x)>1-4c2在x∈[1,3]时恒成立,说明函数在此区间上的最小值大于1-4c2
求出[f(x)]min=f(2)=c-4,故c-4>1-4c2
解得c>1或c<-
5
4
点评:本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案