精英家教网 > 高中数学 > 题目详情
10.从集合S={1,2,3,4,5,6}中取3个元素按从小到大排列,这样的排列共有(  )
A.P${\;}_{6}^{3}$个B.C${\;}_{6}^{3}$个C.$\frac{1}{2}$P${\;}_{6}^{3}$个D.$\frac{1}{2}$C${\;}_{6}^{3}$个

分析 6个元素,任取3个元素,都能从小到大排列成为符合要求的排列,问题得以解决.

解答 解:从6个元素,任取3个元素,都能从小到大排列成为符合要求的排列,
所以问题转换为从6个元素中取3个元素可以有多少种取法,共有C${\;}_{6}^{3}$个.
故选:B.

点评 本题是排列组合的基础题目,关键在于读懂题目的要求,转化成为组合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.政府鼓励创新、创业,银行给予低息贷款.一位大学毕业生向自主创业,经过市场调研、测算,有两个方案可供选择.
方案1:开设一个科技小微企业,需要一次性贷款40万元,第一年获利是贷款额的10%,以后每年比上一年增加25%的利润.
方案2:开设一家食品小店,需要一次性贷款20万元,第一年获利是贷款额的15%,以后每年比上一年增加利润1.5万元.两种方案使用期限都是10年,到期一次性还本付息.两种方案均按年息2%的复利计算(参考数据:1.259=7.45,1.2510=9.3,1.029=1.20,1.0210=1.22).
(1)10年后,方案1,方案2的总收入分别有多少万元?
(2)10年后,哪一种方案的利润较大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.分别求出正十五边形任三个顶点所构成的锐角三角形及钝角三角形的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.三个人互换座位,则不同的换法有2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某企业人力资源科有8名工作人员,其中男5名,女3名.
(1)要选3名假日值班,有多少种不同选法?
(2)要选3名假日值班,至少有1名男性,有多少种不同选法?
(3)要选3名假日值班,至少有1名男性,1名女性,问有多少种不同的选法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知af(4x-3)+bf(3-4x)=4x,a2≠b2,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某公司对销售人员奖励方案如下:①销售利润不超过10万元时,按销售利润的5%奖励.②销售利润超过10万元时,超出部分为a万元,其超出部分按2log3(a+2)奖励.当销售利润为x万元时,销售人员的奖励为y万元,求y关于x的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.六个人从左到右排成一行,最右端只能排甲或乙,最左端不能排乙,则不同的排法种数共有(  )
A.192B.216C.240D.288

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若(3x-$\frac{1}{\root{3}{{x}^{2}}}$)n的二项式系数和为64,则展开式中含有x的项为-540x.

查看答案和解析>>

同步练习册答案