精英家教网 > 高中数学 > 题目详情
(2012•四川)函数f(x)=6cos2
ωx
2
+
3
sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(Ⅰ)求ω的值及函数f(x)的值域;
(Ⅱ)若f(x0)=
8
3
5
,且x0∈(-
10
3
2
3
),求f(x0+1)的值.
分析:(Ⅰ)将f(x)化简为f(x)=2
3
sin(ωx+
π
3
),利用正弦函数的周期公式与性质可求ω的值及函数f(x)的值域;
(Ⅱ)由x0∈(-
10
3
2
3
)
,知
π
4
x0+
π
3
∈(-
π
2
π
2
),由f(x0)=
8
3
5
,可求得即sin(
π
4
x0+
π
3
)=
4
5
,利用两角和的正弦公式即可求得f(x0+1).
解答:解:(Ⅰ)由已知可得,f(x)=3cosωx+
3
sinωx
=2
3
sin(ωx+
π
3
),
又正三角形ABC的高为2
3
,从而BC=4,
∴函数f(x)的周期T=4×2=8,即
ω
=8,ω=
π
4

∴数f(x)的值域为[-2
3
,2
3
]…6分
(Ⅱ)∵f(x0)=
8
3
5
,由(Ⅰ)有f(x0)=2
3
sin(
π
4
x0+
π
3
)=
8
3
5

即sin(
π
4
x0+
π
3
)=
4
5
,由x0∈(-
10
3
2
3
)
,知
π
4
x0+
π
3
∈(-
π
2
π
2
),
∴cos(
π
4
x0+
π
3
)=
1-(
4
5
)
2
=
3
5

∴f(x0+1)=2
3
sin(
π
4
x0+
π
4
+
π
3
)=2
3
sin[(
π
4
x0+
π
3
)+
π
4
]=2
3
[sin(
π
4
x0+
π
3
)cos
π
4
+cos(
π
4
x0+
π
3
)sin
π
4
]
=2
3
4
5
×
2
2
+
3
5
×
2
2

=
7
6
5
…12分
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,着重考查三角函数的化简求值与正弦函数的性质,考查分析转化与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ex(sinx-cosx),若0≤x≤2012π,则函数f(x)的各极大值之和为(  )
A、
eπ(1-e2012π)
1-e
B、
eπ(1-e1006π)
1-eπ
C、
eπ(1-e1006π)
1-e
D、
eπ(1-e2012π)
1-eπ

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)函数f(x)=
1
1-2x
的定义域是
(-∞,
1
2
(-∞,
1
2
.(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)函数f(x)=
.
sinx2
-1cosx
.
的最小正周期是
π
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)函数f(x)=
x2-9
x-3
,x<3
ln(x-2),x≥3
在x=3处的极限是(  )

查看答案和解析>>

同步练习册答案