【题目】某校在高二年级开展了体育分项教学活动,将体育课分为大球(包括篮球、排球、足球)、小球(包括乒乓球、羽毛球)、田径、体操四大项(以下简称四大项,并且按照这个顺序).为体现公平,学校规定时间让学生在电脑上选课,据初步统计,在全年级980名同学中,有意申报四大项的人数之比为3:2:1:1,而实际上由于受多方面条件影响,最终确定的四大项人数必须控制在2:1:3:1,选课不成功的同学由电脑自动调剂到田径类.
(Ⅰ)随机抽取一名同学,求该同学选课成功(未被调剂)的概率;
(Ⅱ)某小组有五名同学,有意申报四大项的人数分别为2、1、1、1,记最终确定到田径类的人数为,求的分布列及数学期望.
科目:高中数学 来源: 题型:
【题目】已知圆C的极坐标方程为 ,直线l的参数方程为 (t为常数,t∈R)
(1)求直线l的普通方程和圆C的直角坐标方程;
(2)求直线l与圆C相交的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆: 的离心率为, 、为椭圆的左右顶点,焦点到短轴端点的距离为2, 、为椭圆上异于、的两点,且直线的斜率等于直线斜率的2倍.
(Ⅰ)求证:直线与直线的斜率乘积为定值;
(Ⅱ)求三角形的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1, 在直角梯形中, , , , 为线段的中点. 将沿折起,使平面 平面,得到几何体,如图2所示.
(1)求证: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学有A、B、C三个不同的校区,其中A校区有4000人,B校区有3000人,C校区有2000人,采用按校区分层抽样的方法,从中抽取900人参加一项活动,则A、B、C校区分别抽取( )
A.400人、300人、200人
B.350人、300人、250人
C.250人、300人、350人
D.200人、300人、400人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆: 的离心率为,焦距为.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线: 交椭圆于两点, 是椭圆上一点,直线的斜率为,且, 是线段延长线上一点,且, 的半径为, 是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且a≠1,函数f(x)=loga .
(1)求f(x)的定义域D及其零点;
(2)设g(x)=mx2﹣2mx+3,当a>1时,若对任意x1∈(﹣∞,﹣1],存在x2∈[3,4],使得f(x1)≤g(x2),求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着“全面二孩”政策推行,我市将迎来生育高峰。今年新春伊始,泉城各医院产科就已经是一片忙碌至今热度不减。卫生部门进行调查统计期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中10个是“二孩”宝宝;
(1)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询,
①在市第一医院出生的一孩宝宝中抽取多少个?
②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;
(II)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?
P(k≥k市) | 0.40 | 0.25 | 0.15 | 0.10 |
k市 | 0.708 | 1.323 | 2.072 | 2.706 |
K2=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com