精英家教网 > 高中数学 > 题目详情

【题目】随着“全面二孩”政策推行,我市将迎来生育高峰。今年新春伊始,泉城各医院产科就已经是一片忙碌至今热度不减。卫生部门进行调查统计期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中10个是“二孩”宝宝;

(1)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询,

①在市第一医院出生的一孩宝宝中抽取多少个?

②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;

(II)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?

P(k≥k

0.40

0.25

0.15

0.10

k

0.708

1.323

2.072

2.706

K2=

【答案】(I)①2个;②(II)没有85%的把握认为一孩、二孩宝宝的出生于医院有关。

【解析】试题分析:

(1)由题意结合抽样比可得在市第一医院出生的一孩宝宝中抽取2个,这两个宝宝恰出生不同医院且均属二孩的概率是

(2)由题意可求得K2≈1.9442.072,故没有85%的把握认为一孩、二孩、孩宝宝的出生与医院有关。

试题解析:

I①由分层抽样知在市第一医院出生的宝宝有7x4个,其中一孩宝宝有2个。

②在抽取7个宝宝中,市一院出生的一孩宝宝2人分别记为A1B1,二孩宝宝2人,分别记

a1b1,妇幼保健院出生的一孩宝宝2人,分别记为A2B2,二孩宝宝1人,记为a2,从7人中抽取2人的一切可能结果所组成的基本事件空间为

Ω={A1B1),(A1a1),(A1b1)(A1A2),(A1B2),(A1a1),(B1a1),(B1b1),(B1A2),(B1B2),(B1a2),(a1b1),(a1A2),(a1B2),(a1a=2),(b1A2),(b1B2),(b1a2),(A2B2),(A2a2),(B2a=2}

可用A表示:两个宝宝掐出生不同医院且均属二孩,则A={a1a2),(b1a2}

PA=

II2x2列联表

一孩

二孩

合计

第一医院

20

20

40

妇幼保健院

20

10

30

合计

40

30

70

K2=≈1.9442.072,故没有85%的把握认为一孩、二孩、孩宝宝的出生与医院有关。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校在高二年级开展了体育分项教学活动,将体育课分为大球(包括篮球、排球、足球)、小球(包括乒乓球、羽毛球)、田径、体操四大项(以下简称四大项,并且按照这个顺序).为体现公平,学校规定时间让学生在电脑上选课,据初步统计,在全年级980名同学中,有意申报四大项的人数之比为3:2:1:1,而实际上由于受多方面条件影响,最终确定的四大项人数必须控制在2:1:3:1,选课不成功的同学由电脑自动调剂到田径类.

(Ⅰ)随机抽取一名同学,求该同学选课成功(未被调剂)的概率;

(Ⅱ)某小组有五名同学,有意申报四大项的人数分别为2、1、1、1,记最终确定到田径类的人数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足:g(3)=27,定义域为R的函数f(x)= 是奇函数.
(1)确定y=g(x),y=f(x)的解析式;
(2)若h(x)=kx﹣g(x)在(0,1)上有零点,求k的取值范围;
(3)若对任意的t∈(1,4),不等式f(2t﹣3)+f(t﹣k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a>0,f(x)= + 是R上的偶函数.
(1)求a的值;
(2)证明f(x)在(0,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn , 且a1 , a4 , a13分别是等比数列{bn}的b2 , b3 , b4 . (Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年10月,继微信支付对提现转账收费后,支付宝也开始对提现转账收费,随着这两大目前用户使用粘度最高的第三方支付开始收费,业内人士分析,部分对价格敏感的用户或将回流至传统银行体系,某调查机构对此进行调查,并从参与调查的数万名支付宝用户中随机选取200人,把这200人分为3类:认为使用支付宝方便,仍使用支付宝提现转账的用户称为“类用户”;根据提现转账的多少确定是否使用支付宝的用户称为“类用户”;提前将支付宝账户内的资金全部提现,以后转账全部通过银行的用户称为“类用户”,各类用户的人数如图所示:

同时把这200人按年龄分为青年人组与中老年人组,制成如图所示的列联表:

类用户

类用户

合计

青年

20

中老年

40

合计

200

(Ⅰ)完成列联表并判断是否有99.5%的把握认为“类用户与年龄有关”;

(Ⅱ)从这200人中按类用户、类用户、类用户进行分层抽样,从中抽取10人,再从这10人中随机抽取4人,求在这4人中类用户、类用户、类用户均存在的概率;

(Ⅲ)把频率作为概率,从支付宝所有用户(人数很多)中随机抽取3人,用表示所选3人中类用户的人数,求的分布列与期望.

附:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 ,P为双曲线上一点,F1 , F2是双曲线的两个焦点,且∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x3 ax2+(a﹣1)x+1在区间(2,3)内为减函数,在区间(5,+∞)为增函数,则实数a的取值范围是(
A.[3,4]
B.[5,7]
C.[4,6]
D.[7,8]

查看答案和解析>>

同步练习册答案