精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)讨论的单调性并求极值;

(Ⅱ)若点在函数上,当,且时,证明: 是自然对数的底数)

【答案】(Ⅰ)答案见解析;(Ⅱ)证明见解析.

【解析】试题分析:(Ⅰ) 当时, 上单调递增,无极值,当时,令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间,根据单调性可得函数的极值;(Ⅱ)由点在函数上,可得,利用导数研究函数的单调性,从而可得,得恒成立,取 ,化简可得结果.

试题解析:(Ⅰ)由题,得.

时, 上单调递增,无极值;

时,令,得.

时, 单调递减;

时, 单调递增.

的极小值为,无极大值;

(Ⅱ),代入点 .

.

.

时, 单调递减;

时, 单调递增.

.

恒成立,

恒成立.

,令.

.

,即

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)讨论函数的单调性;

(2)证明:当时,函数有最小值.设的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为abc,已知2bcosC=acosC+ccosA.

(1)求角C的大小;

(2)若b=2,c=,求a及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的方程为),点为坐标原点,点 的坐标分别为 ,点在线段上,满足,直线的斜率为

(1)求椭圆的方程;

(2)若斜率为的直线交椭圆 两点,交轴于点),问是否存在实数使得以为直径的圆恒过点?若存在,求的值,若不存在,说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:恒成立;

(2)若关于的方程至少有两个不相等的实数根,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为。若每次抽取的结果是相互独立的,求的平均值和方差.

附: ,其中.

td style="width:124.95pt; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">

3.841

0.05

0.01

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂今年前三个月生产某种产品的数量统计表如下:

为了估测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟产品的月产量与月份的关系,模拟函数可选择二次函数为常数且),或函数为常数).已知4月份的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点M0-2)、N(3,1),且圆心C在直线x+2y+1=0上.

(1)求圆C的方程;

(2)设直线ax-y+1=0与圆C交于AB两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知圆的圆心坐标为,半径为,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,直线的参数方程为: 为参数)

(1)求圆和直线的极坐标方程;

(2)点 的极坐标为,直线与圆相较于,求的值.

查看答案和解析>>

同步练习册答案