【题目】(1)讨论函数
的单调性;
(2)证明:当
时,函数
有最小值.设
的最小值为
,求函数
的值域.
【答案】(1)
在
单调递增,(2)
的值域是![]()
【解析】试题分析:(1)求出f(x)的定义域,对原函数求导,利用导函数恒大于等于0可得f(x)的单调性;
(2)求出
由(1)知,
单调递增,又由函数零点存在定理可得存在唯一
,使得
,则当
时,
,
单调递减;当
时,
,
,
单调递增.求出函数最小值,再由最小值为关于a的增函数可得
的值域.
试题解析:
(1)
的定义域为![]()
,
当且仅当
时,
,
所以
在
单调递增.
(2)
,
由(1)知,
单调递增,
对任意
,
,
,
因此,存在唯一
,使得
,即
,
当
时,
,
单调递减;
当
时,
,
,
单调递增.
因此
在
处取得最小值,最小值为
.
于是
,由
,知
单调递增
所以,由
,得
.
因为
单调递增,对任意
,存在唯一的
,
,
使得
,所以
的值域是
,
综上,当
时,
有最小值
,
的值域是
.
科目:高中数学 来源: 题型:
【题目】以下三个关于圆锥曲线的命题中:
①设
为两个定点,
为非零常数,若
,则动点
的轨迹是双曲线;
②方程
的两根可分别作为椭圆和双曲线的离心率;
③双曲线
与椭圆
有相同的焦点;
④已知抛物线
,以过焦点的一条弦
为直径作圆,则此圆与准线相切,其中真命题为__________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(限定
).
(1)写出曲线
的极坐标方程,并求
与
交点的极坐标;
(2)射线
与曲线
与
分别交于点
(
异于原点),求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知由自然数组成的
元集合
,非空集合
,且对任意的
,都有
.
(1)当
时,求所有满足条件的集合
;
(2)当
时,求所有满足条件的集合
的元素总和;
(3)定义一个集合的“交替和”如下:按照递减的次序重新排列该集合的元素,然后从最大数开始交替地减、加后继的数.例如集合
的交替和是
,集合
的交替和为
.当
时,求所有满足条件的集合
的“交替和”的总和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:
![]()
(1)求频率直方图中a的值;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,若
,且
的图象相邻的对称轴间的距离不小于
.
(1)求
的取值范围.
(2)若当
取最大值时,
,且在
中,
分别是角
的对边,其面积
,求
周长的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com