精英家教网 > 高中数学 > 题目详情

【题目】已知函数,记的解集为

(1)求集合(用区间表示);

(2)当时,求函数的最小值;

(3)若函数在区间上为增函数,求的取值范围.

【答案】(1);(2)2;(3)

【解析】

1)利用分段函数解析式,求得不等式的解集.

2)利用对数运算化简函数,结合二次函数的性质求得函数的最小值.

3)根据复合函数单调性同增异减,结合二次函数的性质列不等式组,解不等式组求得的取值范围.

1)当时,由,即,故.时,由,即,故.综上所述,集合.

2)由(1)得,即函数的定义域为.,由于,所以,结合二次函数的性质可知,当时,取得最小值为.

3)依题意函数在区间上为增函数,根据复合函数单调性同增异减,以及二次函数的开口向上,对称轴可知,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中, 中点(如图1).将沿折起到图2中的位置,得到四棱锥.

(1)将沿折起的过程中, 平面是否成立?并证明你的结论;

(2)若,过的平面交于点,且的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)讨论函数的单调性;

(2)证明:当时,函数有最小值.设的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且AF2F1为钝角,若|AF1|=,|AF2|=

(1)求曲线C1和C2的方程;

(2)设点C是C2上一点,若|CF1|=|CF2|,求CF1F2的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集具有性质:对任意的两数中至少有一个属于.

1)分别判断数集是否具有性质,并说明理由;

2)证明:

3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市有户籍的人口共万,其中老人(年龄岁及以上)人数约有万,为了了解老人们的健康状况,政府从老人中随机抽取人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以岁为界限分成两个群体进行统计,样本分布被制作成如下图表:

(1)若从样本中的不能自理的老人中采取分层抽样的方法再抽取人进一步了解他们的生活状况,则两个群体中各应抽取多少人?

(2)估算该市岁以上长者占全市户籍人口的百分比;

(3)政府计划为岁及以上长者或生活不能自理的老人每人购买元/年的医疗保险,为其余老人每人购买元/年的医疗保险,不可重复享受,试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为abc,已知2bcosC=acosC+ccosA.

(1)求角C的大小;

(2)若b=2,c=,求a及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的方程为),点为坐标原点,点 的坐标分别为 ,点在线段上,满足,直线的斜率为

(1)求椭圆的方程;

(2)若斜率为的直线交椭圆 两点,交轴于点),问是否存在实数使得以为直径的圆恒过点?若存在,求的值,若不存在,说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点M0-2)、N(3,1),且圆心C在直线x+2y+1=0上.

(1)求圆C的方程;

(2)设直线ax-y+1=0与圆C交于AB两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案