精英家教网 > 高中数学 > 题目详情

【题目】中, 中点(如图1).将沿折起到图2中的位置,得到四棱锥.

(1)将沿折起的过程中, 平面是否成立?并证明你的结论;

(2)若,过的平面交于点,且的中点,求三棱锥的体积.

【答案】(1)见解析;(2).

【解析】试题分析:(1)将沿折起过程中, 平面成立。原因是:在中,由余弦定理求出,满足勾股定理,所以为等腰直角三角形且,又 ,所以平面成立;(2)求出三棱锥的高,算出的面积,由三棱锥体积公式求出三棱锥的体积.

试题解析:(1)将沿折起过程中, 平面成立,

证明:∵中点,∴

中,由余弦定理得,

.

为等腰直角三角形且

平面.

(2)因为

为等边三角形,

中点,连结,则,

由(1)知平面 平面

∴平面平面

平面

∴三棱锥的高.

中点,∴ .

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)若曲线处的切线方程为求实数的值;

2)设若对任意两个不等的正数都有恒成立,求实数的取值范围;

3)若在上存在一点使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下三个关于圆锥曲线的命题中:

①设为两个定点,为非零常数,若,则动点的轨迹是双曲线;

②方程的两根可分别作为椭圆和双曲线的离心率;

③双曲线与椭圆有相同的焦点;

④已知抛物线,以过焦点的一条弦为直径作圆,则此圆与准线相切,其中真命题为__________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为 上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左右顶点分别为,若交直线两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).

(1)写出曲线的极坐标方程,并求交点的极坐标;

(2)射线与曲线分别交于点异于原点),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,过抛物线上一定点,作两条直线分别交抛物线于

(1)求该抛物线上纵坐标为的点到其焦点的距离;

(2)的斜率存在且倾斜角互补时,求的值,并证明直线的斜率是非零常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).

(1)写出曲线的极坐标方程,并求交点的极坐标;

(2)射线与曲线分别交于点异于原点),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知由自然数组成的元集合,非空集合,且对任意的,都有.

(1)时,求所有满足条件的集合;

(2)时,求所有满足条件的集合的元素总和;

(3)定义一个集合的交替和如下:按照递减的次序重新排列该集合的元素,然后从最大数开始交替地减、加后继的数.例如集合的交替和是,集合的交替和为.时,求所有满足条件的集合交替和的总和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,记的解集为

(1)求集合(用区间表示);

(2)当时,求函数的最小值;

(3)若函数在区间上为增函数,求的取值范围.

查看答案和解析>>

同步练习册答案