【题目】在中, , , , 是中点(如图1).将沿折起到图2中的位置,得到四棱锥.
(1)将沿折起的过程中, 平面是否成立?并证明你的结论;
(2)若,过的平面交于点,且为的中点,求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)若曲线在处的切线方程为,求实数的值;
(2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;
(3)若在上存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下三个关于圆锥曲线的命题中:
①设为两个定点,为非零常数,若,则动点的轨迹是双曲线;
②方程的两根可分别作为椭圆和双曲线的离心率;
③双曲线与椭圆有相同的焦点;
④已知抛物线,以过焦点的一条弦为直径作圆,则此圆与准线相切,其中真命题为__________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为, 上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,若交直线于两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).
(1)写出曲线的极坐标方程,并求与交点的极坐标;
(2)射线与曲线与分别交于点(异于原点),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,过抛物线上一定点,作两条直线分别交抛物线于,.
(1)求该抛物线上纵坐标为的点到其焦点的距离;
(2)当与的斜率存在且倾斜角互补时,求的值,并证明直线的斜率是非零常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).
(1)写出曲线的极坐标方程,并求与交点的极坐标;
(2)射线与曲线与分别交于点(异于原点),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知由自然数组成的元集合,非空集合,且对任意的,都有.
(1)当时,求所有满足条件的集合;
(2)当时,求所有满足条件的集合的元素总和;
(3)定义一个集合的“交替和”如下:按照递减的次序重新排列该集合的元素,然后从最大数开始交替地减、加后继的数.例如集合的交替和是,集合的交替和为.当时,求所有满足条件的集合的“交替和”的总和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com