精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左右焦点分别为 上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左右顶点分别为,若交直线两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.

【答案】(1).(2) .

【解析】试题分析:(1)由椭圆定义可知 ,由原点到直线的距离求出,得到椭圆的标准方程;(2)设 ,则 ,由,得,求出M,N的坐标,因为,故以为直径的圆与轴交于两点,在以为直径的圆中应用相交弦定理求出,从而以为直径的圆恒过两个定点 .

试题解析:(1)由椭圆定义可知

直线

故椭圆的标准方程为: .

(2)设,点,则

,得:

直线方程为: ,令,则,故

直线方程为: ,令,则,故

因为,故以为直径的圆与轴交于两点,设为

在以为直径的圆中应用相交弦定理得:

因为,所以

从而以为直径的圆恒过两个定点 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为分组后某组抽到的号码为41.抽到的人中,编号落入区间 的人数为( )

A. 10 B. C. 12 D. 13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数)

写出直线的普通方程与曲线的直角坐标方程;

(2)设曲线经过伸缩变换后得到曲线,设上任意一点,

的最小值,并求相应的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的极值;

(2)当时,若对任意都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下列结论正确的是(  )

A. 导函数为

B. 函数f(x)的图象关于直线对称

C. 函数f(x)在区间上是增函数

D. 函数f(x)的图象可由函数y3cos 2x的图象向右平移个单位长度得到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中, 中点(如图1).将沿折起到图2中的位置,得到四棱锥.

(1)将沿折起的过程中, 平面是否成立?并证明你的结论;

(2)若,过的平面交于点,且的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分) 已知双曲线的两个焦点为的曲线C.

)求双曲线C的方程;

)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点EF,若OEF的面积为求直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且AF2F1为钝角,若|AF1|=,|AF2|=

(1)求曲线C1和C2的方程;

(2)设点C是C2上一点,若|CF1|=|CF2|,求CF1F2的面积

查看答案和解析>>

同步练习册答案