精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求函数的极值;

(2)当时,若对任意都有,求实数的取值范围.

【答案】(1) (2)

【解析】

(1)把a=2代入,找出导函数为0的自变量,看在自变量左右两侧导函数的符号来求极值即可.

(2)先根据导函数的解析式确定函数f(x)的单调性,然后根据a的不同范围进行讨论进而确定其答案.

解:(1)当时,

所以当时,为增函数

时,为减函数

时,为增函数

所以

(2)

所以上单调递增;在上单调递减;

上单调递增;

时,函数上单调递增

所以函数上的最大值是

由题意得,解得:

因为, 所以此时的值不存在

时,,此时上递增,在上递减

所以函数上的最大值是

由题意得,解得:

综上的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,分别是棱的中点,点棱上,且.

(1)求证:平面

(2)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱 平面 .

1)证明:平面平面

2)若四棱柱的体积为求该三棱柱的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下,频率分布直方图如图:

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下三个关于圆锥曲线的命题中:

①设为两个定点,为非零常数,若,则动点的轨迹是双曲线;

②方程的两根可分别作为椭圆和双曲线的离心率;

③双曲线与椭圆有相同的焦点;

④已知抛物线,以过焦点的一条弦为直径作圆,则此圆与准线相切,其中真命题为__________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程的不同实数根的个数为,则的所有可能值为( )

A. 3 B. 1或3 C. 3或5 D. 1或3或5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为 上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左右顶点分别为,若交直线两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,过抛物线上一定点,作两条直线分别交抛物线于

(1)求该抛物线上纵坐标为的点到其焦点的距离;

(2)的斜率存在且倾斜角互补时,求的值,并证明直线的斜率是非零常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:Cx=若不建隔热层,每年能源消耗费用为8万元。设fx)为隔热层建造费用与20年的能源消耗费用之和。

)求k的值及f(x)的表达式。

)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

查看答案和解析>>

同步练习册答案