精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数)

写出直线的普通方程与曲线的直角坐标方程;

(2)设曲线经过伸缩变换后得到曲线,设上任意一点,

的最小值,并求相应的点的坐标.

【答案】1直线方程为 2见解析.

【解析】试题分析:1)因为极径为2,故曲线的直角坐标方程为,消去直线中的参数可以得到直线的普通方程为.(2)通过坐标间的对应关系可以得到曲线的直角坐标方程为,其参数方程为,因此,可利用三角函数的知识求出该解析式何时取何最小值.

解析:1,故圆的方程为.直线的参数方程为 直线方程为.

(2)由 .设点,则,所以当时,原式的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点.

(1)求椭圆的方程;

(2)已知是椭圆上的两点,是椭圆上位于直线两侧的动点.

①若直线的斜率为,求四边形面积的最大值;

②当运动时,满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)若曲线处的切线方程为求实数的值;

2)设若对任意两个不等的正数都有恒成立,求实数的取值范围;

3)若在上存在一点使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱 平面 .

1)证明:平面平面

2)若四棱柱的体积为求该三棱柱的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下,频率分布直方图如图:

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下,频率分布直方图如图:

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下三个关于圆锥曲线的命题中:

①设为两个定点,为非零常数,若,则动点的轨迹是双曲线;

②方程的两根可分别作为椭圆和双曲线的离心率;

③双曲线与椭圆有相同的焦点;

④已知抛物线,以过焦点的一条弦为直径作圆,则此圆与准线相切,其中真命题为__________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为 上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左右顶点分别为,若交直线两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知由自然数组成的元集合,非空集合,且对任意的,都有.

(1)时,求所有满足条件的集合;

(2)时,求所有满足条件的集合的元素总和;

(3)定义一个集合的交替和如下:按照递减的次序重新排列该集合的元素,然后从最大数开始交替地减、加后继的数.例如集合的交替和是,集合的交替和为.时,求所有满足条件的集合交替和的总和.

查看答案和解析>>

同步练习册答案