精英家教网 > 高中数学 > 题目详情

求函数的定义域.

解析试题分析:先由被开方数为非负列出不等式组,同时结合真数大于0写出的范围,解出不等式组.
由已知条件,自变量需满足

所以
故而所求函数定义域为.
考点:1、对数的真数范围;2、不等式组的求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数在其定义域上为奇函数.
⑴求m的值;
⑵若关于x的不等式对任意实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x+的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x).
(1)求g(x)的解析式;
(2)若直线y=m与C2只有一个交点,求m的值和交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),
当0≤x≤1时,f(x)=x.
(1)求f(3)的值;
(2)当-4≤x≤4时,求f(x)的图像与x轴所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时函数取得极小值,求a的值;(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的最小值;
(2)对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•重庆)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.
(1)试写出y关于x的函数关系式,并写出定义域;
(2)当k=50米时,试确定座位的个数,使得总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)解方程:
(2)令,求证:

(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案