精英家教网 > 高中数学 > 题目详情
已知点P为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
右支上一点,F1,F2为双曲线的左、右焦点.O为坐标原点,若(
OP
+
OF2
)•
F2P
=0
且△PF1F2的面积为2ac(c为双曲线半焦距)则双曲线的离心率为
1+
2
1+
2
分析:根据向量数量积的运算性质,可得|
OP
|=
1
2
|
F1F2
|,得△PF1F2是以P为直角顶点的直角三角形.由双曲线的定义结合勾股定理,算出S△PF1F2=c2-a2=2ac,将其转化为关于离心率e的方程,解之即可得到该双曲线的离心率.
解答:解:∵
F2P
=
OP
-
OF2

(
OP
+
OF2
)•(
OP
-
OF2
)
=
OP
2
-
OF2
2
=0
可得|
OP
|=|
OF2
|=
1
2
|
F1F2
|,所以△PF1F2是以P为直角顶点的直角三角形
∵|
PF1
|-|
PF2
|=±2a
∴(|
PF1
|-|
PF2
|)2=|
PF1
|2-2|
PF1
|•|
PF2
|+|
PF2
|2=4a2
∵|
PF1
|2+|
PF2
|2=4c2,|
PF1
|•|
PF2
|=2S△PF1F2
∴4c2-4S△PF1F2=4a2,得S△PF1F2=c2-a2
∵由题意△PF1F2的面积为2ac,
∴c2-a2=2ac,两边都除以a2,得
c2
a2
-1=2•
c
a

整理,得e2-2e-1=0,解之得e=1±
2
(舍负)
故答案为:1+
2
点评:本题给出双曲线的焦点三角是直角三角形,求该双曲线的离心率,着重考查了双曲线的简单几何性质、双曲线的离心率定义及其求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)和圆x2+y2=a2+b2
的一个交点,F1,F2是该双曲线的两个焦点,∠PF2F1=2∠PF1F2,则该双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•扬州三模)已知点P是双曲线x2-y2=2上的点,该点关于实轴的对称点为Q,则
OP
OQ
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在双曲线x2-y2=1的右支上,且点P到直线y=x的距离为,则点P的坐标是_________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在双曲线x2-y2=1的右支上,且点P到直线y=x的距离为,则点P的坐标是_________________.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省扬州市高考数学三模试卷(解析版) 题型:解答题

已知点P是双曲线x2-y2=2上的点,该点关于实轴的对称点为Q,则=   

查看答案和解析>>

同步练习册答案