精英家教网 > 高中数学 > 题目详情
2.已知等边△ABC的边长为2,若$\overrightarrow{BC}$=3$\overrightarrow{BE}$,$\overrightarrow{AD}$=$\overrightarrow{DC}$,则$\overrightarrow{BD}$•$\overrightarrow{AE}$等于(  )
A.-2B.-$\frac{10}{3}$C.2D.$\frac{10}{3}$

分析 根据题意得出$\overrightarrow{BD}$=$\frac{1}{2}$($\overrightarrow{BA}$+$\overrightarrow{BC}$),$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{BC}$-$\overrightarrow{BA}$,运用数量积求解即可.

解答 解:等边△ABC的边长为2,$\overrightarrow{BC}$=3$\overrightarrow{BE}$,$\overrightarrow{AD}$=$\overrightarrow{DC}$,
∴$\overrightarrow{BD}$=$\frac{1}{2}$($\overrightarrow{BA}$+$\overrightarrow{BC}$),$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{BC}$-$\overrightarrow{BA}$,
∴$\overrightarrow{BD}$•$\overrightarrow{AE}$=$\frac{1}{2}$($\frac{1}{3}$${\overrightarrow{BC}}^{2}$-${\overrightarrow{BA}}^{2}$-$\frac{2}{3}\overrightarrow{BC}•\overrightarrow{BA}$),
=$\frac{1}{2}$×($\frac{1}{3}$×4-4-$\frac{2}{3}$×2×2×$\frac{1}{2}$),
=-2.
故选A

点评 本题考查了平面向量的运算,数量积的求解,属于中档题,关键是分解向量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.过顶点在原点、对称轴为y轴的抛物线E上的定点A(2,1)作斜率分别为k1、k2的直线,分别交抛物线E于B、C两点.
(1)求抛物线E的标准方程和准线方程;
(2)若k1+k2=k1k2,证明:直线BC恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售,请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给消费者的实惠大.面对问题我们并不能一目了然,于是我们首先作了一个随机调查,把全组的16名学员作为调查对象,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以.调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?请给予说明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.我们知道f(x)=sinx是周期函数,且2π是它的最小正周期,它的图象关于点(0,0)与(π,0)对称,且2(π-0)=2π.若定义在R上的函数f(x)的图象关于点(a,y0),(b,y0)(a≠b)对称,则函数f(x)是否是周期函数?若是,求出它的一个周期;若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,内角A,B,C的对边分别为a,b,c,若cosA=$\frac{7}{8}$,c-a=2,b=3,则a等于(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左右两焦点,以F1为圆心的圆恰经过双曲线的中心,过F2作⊙F1的切线,切点为P,若点P恰在双曲线一条渐近线上,则此双曲线的离心率为(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$+1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.平面内直线l交双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)于A,B两点,交双曲线的渐近线于C,D两点,则
①|AC|=|BD|;②|OA|•|OB|=|OC|•|OD|;③$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OC}$+$\overrightarrow{OD}$;④$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OC}$•$\overrightarrow{OD}$
其中正确结论的序号有①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,AF是圆E切线,F是切点,割线ABC,BM是圆E的直径,EF交AC于D,$AB=\frac{1}{3}AC$,∠EBC=30°,MC=2.
(Ⅰ)求线段AF的长;
(Ⅱ)求证:AD=3ED.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.从1到9的九个数字中任取三个偶数四个奇数,问:
(Ⅰ)能组成多少个没有重复数字的七位数?
(Ⅱ)上述七位数中三个偶数排在一起的概率?
(Ⅲ)在(Ⅰ)中任意两偶数都不相邻的概率?

查看答案和解析>>

同步练习册答案