精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=-$\sqrt{3}$sin2x+sinxcosx.
(1)求f($\frac{13}{6}$π)的值;
(2)设α∈(0,π),f($\frac{α}{2}$)=$\frac{1}{4}$-$\frac{\sqrt{3}}{2}$,求sinα的值.

分析 (1)利用二倍角公式和和差角(辅助角)公式,将函数解析式化为:f(x)=sin(2x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,再将x=$\frac{13}{6}$π代入,结合诱导公式和特殊角的三角函数值,可得答案.
(2)由f($\frac{α}{2}$)=$\frac{1}{4}$-$\frac{\sqrt{3}}{2}$,可得sin(α+$\frac{π}{3}$)=$\frac{1}{4}$,进而求出利用同角三角函数的基本关系公式,求cos(α+$\frac{π}{3}$),再由差角正弦公式,可得答案.

解答 解:(1)∵f(x)=-$\sqrt{3}$sin2x+sinxcosx=-$\sqrt{3}$×$\frac{1-cos2x}{2}$+$\frac{1}{2}$sin2x=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$=sin(2x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,
∴f($\frac{13}{6}$π)=sin(2×$\frac{13}{6}$π+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$=sin($\frac{14π}{3}$)-$\frac{\sqrt{3}}{2}$=sin($\frac{2π}{3}$)-$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$=0,
(2)∵f($\frac{α}{2}$)=sin(α+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$=$\frac{1}{4}$-$\frac{\sqrt{3}}{2}$,
∴sin(α+$\frac{π}{3}$)=$\frac{1}{4}$,
又由α∈(0,π),得:α+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),
故cos(α+$\frac{π}{3}$)=-$\frac{\sqrt{15}}{4}$,
故sinα=sin[(α+$\frac{π}{3}$)-$\frac{π}{3}$]=sin(α+$\frac{π}{3}$)cos$\frac{π}{3}$-cos(α+$\frac{π}{3}$)sin$\frac{π}{3}$=$\frac{1}{4}$×$\frac{1}{2}$+$\frac{\sqrt{15}}{4}$×$\frac{\sqrt{3}}{2}$=$\frac{1+3\sqrt{5}}{8}$.

点评 本题考查二倍角的正弦和余弦公式及运用,考查三角函数值的求法,注意周期的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知在等比数列中,a1=$\frac{1}{8}$,q=2,an=8,则n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知平行四边形ABCD的周长为18,AC=$\sqrt{65}$,BD=$\sqrt{17}$,求平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$=2tanα恒成立,则角α可能在的象限是(  )
A.第一象限B.第四象限C.第一、四象限D.第二、三象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A,B,C是△ABC的三内角,且满足2cosBcosC(1-tanBtanC)=1,则角A的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当0<k<1时,函数f(x)=|1-x2|-(kx-k)零点个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{3{x}^{2}-6x+1,x>0}\end{array}\right.$.
(Ⅰ)画出函数f(x)的图象,结合图象,写出函数f(x)的单调区间;
(Ⅱ)结合所画图形,讨论直线y=m与函数f(x)的图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一直线过点P(1,1)且其倾斜角是直线y=$\frac{1}{{\sqrt{3}}}$x的倾斜角的2倍,则此直线的方程为:$\sqrt{3}$x-y-$\sqrt{3}$+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,棱长皆相等的四面体S-ABC中,D为SC的中点,则BD与SA所成角的余弦值是(  )  
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{6}$D.$\frac{{\sqrt{2}}}{6}$

查看答案和解析>>

同步练习册答案