精英家教网 > 高中数学 > 题目详情
5.若数列{an}满足an=n,${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,则数列{bn}的前n项和Sn是(  )
A.$\frac{n}{n+1}$B.$\frac{2n}{n+1}$C.$\frac{n-1}{n}$D.$\frac{2n-2}{n}$

分析 利用数列的通项公式化简数列{bn}的通项公式,利用裂项法求解数列的和即可.

解答 解:数列{an}满足an=n,${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
数列{bn}的前n项和Sn=1$-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+$$\frac{1}{n}-\frac{1}{n+1}$=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.
故选:A.

点评 本题考查数列求和,裂项法的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若y=tanωx在$(-\frac{π}{2},\frac{π}{2})$内为减函数,则(  )
A.ω≥1B.ω≤-1C.-1≤ω<0D.0<ω≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从三元、光明、蒙牛三种品牌的牛奶包装袋中抽取一个样本进行质量检测,采取分层抽样的方法进行抽取,已知三元、光明、蒙牛三种品牌牛奶的总体数(袋数)是1000,2000,3000,若抽取的样本中,光明品牌的样本数是10,则样本中三元品牌和蒙牛品牌的样本之和是(  )
A.15B.20C.25D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设向量$\overrightarrow a=(sinx,\sqrt{3}cosx),\overrightarrow b=(-1,1),\overrightarrow c=(1,1)$.(其中x∈[0,π])
(1)若$(\overrightarrow a+\overrightarrow b)∥\overrightarrow c$,求实数x的值;
(2)若$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,求函数$sin(x+\frac{π}{6})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.30与18的等差中项是24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={x|3≤x<7},B={x|4<x<10},则A∪B={x|3≤x<10},(∁RA)∩B={x|7≤x<10}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设x取实数,则f(x)与g(x)表示同一个函数的是(  )
A.f(x)=x,$g(x)=\sqrt{x^2}$B.f(x)=x与g(x)=$\root{3}{x^3}$
C.f(x)=1,g(x)=x0D.$f(x)=\frac{{{x^2}-9}}{x+3}$,g(x)=x-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的前n项和为Sn,a7=$\frac{1}{64}$,a2=$\frac{1}{2}$.
(Ⅰ)求数列{an}的通项公式及前n项和为Sn
(Ⅱ)若bn=log2(2-Sn),数列{bn}的前n项和为Tn,求数列$\left\{{\frac{1}{T_n}}\right\}$(n≥2)的前n项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)在区间[0,10]中任意取一个数,求它与4之和大于10的概率
  (2)在区间[0,10]中任意取两个数,求它们之和大于9的概率.

查看答案和解析>>

同步练习册答案