分析 (Ⅰ)求出数列的公比与首项,然后求解通项公式以及Sn;
(Ⅱ)求出bn,数列{bn}的前n项和为Tn,化简数列$\left\{{\frac{1}{T_n}}\right\}$,利用裂项法求和即可.
解答 (本题满分10分)
解:(Ⅰ)等比数列{an}的前n项和为Sn,a7=$\frac{1}{64}$,a2=$\frac{1}{2}$.
${a_7}={a_2}{q^5}$,$q=\frac{1}{2}$,${a_n}={a_2}{q^{n-2}}={({\frac{1}{2}})^{n-1}}$,a1=1,
∴${S_n}={\frac{{1-({\frac{1}{2}})}}{{1-\frac{1}{2}}}^n}=2-\frac{1}{{{2^{n-1}}}}$
(Ⅱ)因为${S_n}={\frac{{1-({\frac{1}{2}})}}{{1-\frac{1}{2}}}^n}=2-\frac{1}{{{2^{n-1}}}}$,bn=log2(2-Sn),
所以${b}_{n}=lo{g}_{2}(2-2+\frac{1}{{2}^{n-1}})=1-n$,
则${T_n}=\frac{{-{n^2}+n}}{2}$,
$\frac{1}{T_n}=-\frac{2}{n(n-1)}=-2({\frac{1}{n-1}-\frac{1}{n}})$,
${P_n}=-2({({\frac{1}{1}-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{n-1}-\frac{1}{n}})})=-2\frac{n-1}{n}$.
点评 本题考查数列求和,通项公式的求法,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{n}{n+1}$ | B. | $\frac{2n}{n+1}$ | C. | $\frac{n-1}{n}$ | D. | $\frac{2n-2}{n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 6 | C. | 8 | D. | 14 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com