精英家教网 > 高中数学 > 题目详情

如图,在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,AC=BC=PA=2.
(1)求三棱锥P-ABC的体积V;
(2)求异面直线AB与PC所成角的大小.

解:(1)∵PA⊥底面ABC,∴PA=h,是三棱锥P-ABC的高,
因此,三棱锥P-ABC的体积为
=
(2)取PA中点E,PB中点F,BC中点G,
连接EF,FG,EG,
∵EF、FG分别是△PAB、△PBC的中位线
∴EF∥AB,FG∥PC,
因此,∠EFG(或其补角)就是异面直线AB与PC所成的角.
连接AG,则Rt△AEG中,

又∵,∴
由此可得,在△EFG中

结合∠EFG是三角形内角,可得∠EFG=120°.
综上所述,可得异面直线AB与PC所成角的大小为60°.
分析:(1)由题意,可得PA就是三棱锥P-ABC的高,而底面△ABC是直角边为2的等腰直角三角形,由此结合锥体体积公式即可算出三棱锥P-ABC的体积V;
(2)取PA中点E,PB中点F,BC中点G,连接AG,由三角形中位线定理可得∠EFG(或其补角)就是异面直线AB与PC所成的角.然后在Rt△AEG中算出EG的长,用中位线定理得到EF=FG=,最后在△EFG中用余弦定理算出∠EFG=120°,即得异面直线AB与PC所成角的大小.
点评:本题给出一条侧棱垂直于底面的三棱锥,求该棱锥的体积并求异面直线所成角,着重考查了异面直线及其所成的角及其求法、棱锥的体积公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案