精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=xex-lnx.
(1)当x≥1时,判断函数f(x)的单调性;
(2)若方程2af(x)-2axex+x2-2ax=0有唯一实数解,求正数a的值.

分析 (1)求出函数的导数,通过判断导函数的符号,求出函数的单调区间即可;
(2)问题转化为x2-2alnx-2ax=0在(0,+∞)内有唯一实数解,设g(x)=x2-2alnx-2ax,根据函数的单调性得到关于a的方程,求出a的值即可.

解答 解:(1)f′(x)=(x+1)ex-$\frac{1}{x}$,
∵x≥1时,(x+1)ex≥2e,$\frac{1}{x}$≤1,
∴f′(x)≥2e-1>0,
∴f(x)在[1,+∞)递增;
(2)∵方程2af(x)-2axex+x2-2ax=0有唯一实数解,
∴x2-2alnx-2ax=0在(0,+∞)内有唯一实数解,
设g(x)=x2-2alnx-2ax,g′(x)=$\frac{{2x}^{2}-2ax-2a}{x}$,
令g′(x)=0(a>0),解得:x=$\frac{a+\sqrt{{a}^{2}+4a}}{2}$,
故g(x)在(0,$\frac{a+\sqrt{{a}^{2}+4a}}{2}$)递减,在($\frac{a+\sqrt{{a}^{2}+4a}}{2}$,+∞)递增,
故g(x)的最小值是g($\frac{a+\sqrt{{a}^{2}+4a}}{2}$),且g′($\frac{a+\sqrt{{a}^{2}+4a}}{2}$)=0,
∵g(x)=0有唯一解,故g($\frac{a+\sqrt{{a}^{2}+4a}}{2}$)=0,
令m=$\frac{a+\sqrt{{a}^{2}+4a}}{2}$,
故$\left\{\begin{array}{l}{{m}^{2}-2alnm-2am=0}\\{{m}^{2}-am-a=0}\end{array}\right.$,
故2lnm+m-1=0,
∵h(x)=2lnx+x-1在(0,+∞)递增,
故h(x)至多有1个解,
∵h(1)=0,∴2lnm+m-1=0的解是m=1,
即$\frac{a+\sqrt{{a}^{2}+4a}}{2}$=1,
解得:a=$\frac{1}{2}$.

点评 本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sin(x+$\frac{π}{2}$),g(x)=cos(x+π),则下列结论中正确的是(  )
A.将f(x)的图象向左平移$\frac{π}{2}$个单位后得到g(x)的图象
B.函数y=f(x)•g(x)的最小正周期为2π
C.函数y=f(x)•g(x)的最大值为1
D.x=$\frac{π}{2}$是函数y=f(x)•g(x)图象的一条对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(1+2x)6展开式中含x2项的系数为(  )
A.15B.30C.60D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是45,设摸取的这三个球中所含的黑球数为X,则P(X=k)取最大值时,k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,当点P到点Q的距离与点P到抛物线的准线距离之和最小时,P点的横坐标为(  )
A.$\frac{\sqrt{17}}{8}$B.$\frac{9-\sqrt{17}}{8}$C.$\frac{9}{8}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=3,n=3,输入的a依次为由小到大顺序排列的质数(从最小质数开始),
直到结束为止,则输出的s=(  )
A.9B.27C.32D.103

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设F为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,O为坐标原点,若OF的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为$\frac{2}{3}$|OF|,则双曲线的离心率为(  )
A.$2\sqrt{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$2\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数y=f(x),部x与y的对应关系如下表:
x123456789
y375961824
数列{xn}满足x1=1,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+x3+x4+…+x2017+x2018的值为(  )
A.7560B.7564C.7550D.7554

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上的减函数,其导函数f'(x)满足$\frac{f(x)+xf'(x)}{f'(x)}<1$,则下列结论中正确的是(  )
A.f(x)>0恒成立B.f(x)<0
C.当且仅当x∈(-∞,1),f(x)<0D.当且仅当x∈(1,+∞),f(x)>0

查看答案和解析>>

同步练习册答案