精英家教网 > 高中数学 > 题目详情
7.对于函数y=f(x),部x与y的对应关系如下表:
x123456789
y375961824
数列{xn}满足x1=1,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+x3+x4+…+x2017+x2018的值为(  )
A.7560B.7564C.7550D.7554

分析 由已知得xn+1=f(xn),利用对应关系表求出数列的前6项,得到{xn}从第二项起是以4为周期的周期数列,由此能求出x1+x2+x3+x4+…+x2017+x2018的值.

解答 解:∵数列{xn}满足x1=1,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,
∴xn+1=f(xn),
∴x1=1,x2=f(1)=3,x3=f(3)=5,x4=f(5)=6,x5=f(6)=1,
x6=f(1)=3,x7=f(3)=5,…,
∴{xn}从第二项起是以4为周期的周期数列,
∴x1+x2+x3+x4+…+x2017+x2018=x1+504(x2+x3+x4+x5)+x2=1+504(3+5+6+1)+3=7564.
故选:B.

点评 本题考查函数值的求法,涉及到数列的周期性等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,E为棱AA1上一点,且C1E⊥平面BDE.
(I)求直线BD1与平面BDE所成角的正弦值;
(II)求二面角C-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xex-lnx.
(1)当x≥1时,判断函数f(x)的单调性;
(2)若方程2af(x)-2axex+x2-2ax=0有唯一实数解,求正数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列直线或圆的方程
(1)过点(2,1)且与直线x+3y+4=0垂直的直线方程;
(2)以线段AB:x+y-2=0(0≤x≤2)为直径的圆的标准方程;
(3)圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设$f(x)=\left\{\begin{array}{l}{2^x},x≤0\;,\;\\{log_2}x,x>0\end{array}\right.$则f(f(-1))=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.幂函数f(x)=${x^{{m^2}+5m+4}}({m∈Z})$是偶函数且在(0,+∞)上单调递减,则m的值为-3或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.tan27°+tan33°+$\sqrt{3}$tan27°tan33°=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx(x>0).
(Ⅰ)求证:f(x)≥1-$\frac{1}{x}$;
(Ⅱ)设g(x)=x2f(x),且关于x的方程x2f(x)=m有两个不等的实根x1,x2(x1<x2).
(i)求实数m的取值范围;
(ii)求证:x1x22<${e}^{-\frac{e}{2}}$.
(参考数据:e=2.718,$\frac{1639e}{4639}$≈0.960,$\sqrt{9{e}^{2}-24e}$≈1.124,$\frac{10}{13}$≈0.769,ln2≈0.693,ln2.6≈0.956,ln2.639≈0.970.注:不同的方法可能会选取不同的数据)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x2-x-2<0},$B=\left\{{x|{{log}_4}x<\frac{1}{2}}\right\}$,则(  )
A.A∩B=∅B.UA∪B=RC.A∩B=BD.A∪B=B

查看答案和解析>>

同步练习册答案