精英家教网 > 高中数学 > 题目详情
2.设$f(x)=\left\{\begin{array}{l}{2^x},x≤0\;,\;\\{log_2}x,x>0\end{array}\right.$则f(f(-1))=-1.

分析 先求出f(-1)=${2}^{-1}=\frac{1}{2}$,从而f(f(-1))=f($\frac{1}{2}$),由此能求出结果.

解答 解:∵$f(x)=\left\{\begin{array}{l}{2^x},x≤0\;,\;\\{log_2}x,x>0\end{array}\right.$
∴f(-1)=${2}^{-1}=\frac{1}{2}$,
f(f(-1))=f($\frac{1}{2}$)=$lo{g}_{2}\frac{1}{2}$=-1.
故答案为:-1.

点评 本题考查函数值的求法,考查推理论证能力、运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.${log_3}9\sqrt{3}$=(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,当点P到点Q的距离与点P到抛物线的准线距离之和最小时,P点的横坐标为(  )
A.$\frac{\sqrt{17}}{8}$B.$\frac{9-\sqrt{17}}{8}$C.$\frac{9}{8}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设F为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,O为坐标原点,若OF的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为$\frac{2}{3}$|OF|,则双曲线的离心率为(  )
A.$2\sqrt{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$2\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.与圆x2+y2+2x-4y=0相切于原点的直线方程是(  )
A.x-2y=0B.x+2y=0C.2x-y=0D.2x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数y=f(x),部x与y的对应关系如下表:
x123456789
y375961824
数列{xn}满足x1=1,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+x3+x4+…+x2017+x2018的值为(  )
A.7560B.7564C.7550D.7554

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义域为R的函数f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定义域上为减函数,若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0(k为常数)恒成立.求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}为正项等比数列,a1=2,$\frac{3}{8}$a4是a2和a3的等差中项,Sn为数列{bn}前n项和,2b2=b1+b3,$\sqrt{{S}_{n}}$是公差为1的等差数列.
(1)求数列{nan}的前n项和Tn
(2)求数列{bn}通项公式;
(3)是否存在n∈N*,使Sn=an成立?若存在,求出所有n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的奇函数f(x)满足f(2-x)=f(x),当x∈[0,1]时,f(x)=$\sqrt{x}$.又函数g(x)=cos$\frac{πx}{2}$,x∈[-3,3],则函数F(x)=f(x)-g(x)的所有零点之和等于(  )
A.-$\frac{3}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案