精英家教网 > 高中数学 > 题目详情
17.与圆x2+y2+2x-4y=0相切于原点的直线方程是(  )
A.x-2y=0B.x+2y=0C.2x-y=0D.2x+y=0

分析 先求出圆的标准方程,可得圆心坐标和半径,(0,0)满足圆的方程,从而得到答案.

解答 解:圆:x2+y2+2x-4y=0,即(x+1)2+(y-2)2=5,表示以C(-1,2)为圆心,半径等于$\sqrt{5}$的圆.
(0,0)满足圆的方程,所以过点(0,0)且与圆x2+y2+2x-4y=0相切的直线方程为x-2y=0.
故选:A.

点评 本题主要考查圆的标准方程,考查学生的计算能力,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.△PF1F2的一个顶点P(7,12)在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1上,另外两顶点F1、F2为该双曲线的左、右焦点,则△PF1F2的内心横坐标为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,三棱柱ABC-A1B1C1所有的棱长均为2,A1B=$\sqrt{6}$,A1B⊥AC.
(Ⅰ)求证:A1C1⊥B1C;
(Ⅱ)求直线AC和平面ABB1A1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的各项都是正数,它的前n项和为Sn,满足2Sn=an2+an,记bn=(-1)n$\frac{{2{a_n}+1}}{{{a_n}^2+{a_n}}}$.
(1)求数列{an}的通项公式; 
(2)求数列{bn}的前2016项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线y2=2x和圆x2+y2-x=0,倾斜角为$\frac{π}{4}$的直线l经过抛物线的焦点,若直线l与抛物线和圆的交点自上而下依次为A,B,C,D,则|AB|+|CD|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设$f(x)=\left\{\begin{array}{l}{2^x},x≤0\;,\;\\{log_2}x,x>0\end{array}\right.$则f(f(-1))=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y∈R,i为虚数单位,且(x-2)i-y=-1+i,则(1+i)x+y的值为(  )
A.4B.4+4iC.-4D.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.以直角坐标系原点O为极点,x轴正方向为极轴,已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cost}\\{y=sint}\end{array}\right.$(t为参数),C2的极坐标方程为ρ2(1+sin2θ)=8,C3的极坐标方程为θ=α,α∈[0,π),ρ∈R,
(1)若C1与C3的一个公共点为A(异于O点),且|OA|=$\sqrt{3}$,求α;
(2)若C1与C3的一个公共点为A(异于O点),C2与C3的一个公共点为B,求|OA|•|OB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知(x-2)6=a0+a1(x-1)+a2(x-1)2+…+a6(x-1)6,则a3=(  )
A.15B.-15C.20D.-20

查看答案和解析>>

同步练习册答案