| A. | -$\frac{3}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{2}$ |
分析 利用奇偶性和对称性作出f(x)和g(x)的函数图象,利用周期性得出F(x)的零点间的关系,计算F(x)在(0,1)上的零点即可得出零点之和.
解答 解:∵f(2-x)=f(x),
∴f(x)的图象关于直线x=1对称,
又f(x)是奇函数,
∴f(x)=f(2-x)=-f(x-2),
∴f(x+4)=-f(x+2)=f(x),
∴f(x)的周期为4.
作出f(x)和g(x)在[-3,3]上的函数图象如图所示:![]()
由图象可知f(x)=g(x)在[-3,3]上有3个零点,
不妨设a,b,c且a<b<c,
∵f(x)和g(x)都是周期为4的函数,
∴a=b-2,c=b+2,
∴a+b+c=3b.
∵f($\frac{1}{2}$)=$\sqrt{\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$,g($\frac{1}{2}$)=cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,
∴b=$\frac{1}{2}$,
∴a+b+c=3b=$\frac{3}{2}$.
故选D.
点评 本题考查了函数零点与函数图象的关系,函数周期与对称性性的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∩B=∅ | B. | ∁UA∪B=R | C. | A∩B=B | D. | A∪B=B |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 49 54 43 54 15 37 17 93 39 78 87 35 20 96 43 84 17 34 91 64 |
| 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 |
| A. | 06 | B. | 17 | C. | 20 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3-4\sqrt{3}}}{10}$ | B. | $\frac{{3+4\sqrt{3}}}{10}$ | C. | $\frac{{-3-4\sqrt{3}}}{10}$ | D. | $\frac{{-3+4\sqrt{3}}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com