精英家教网 > 高中数学 > 题目详情
9.如图,正方形网格中,粗实线画出的是某几何体的三视图,若该几何体的体积为7,则该几何体的表面积为(  )
A.18B.21C.24D.27

分析 由三视图可知:该几何体为一个棱长为2x的正方体,在一个角去掉一个棱长为x的正方体余下的几何体.由该几何体的体积7=(2x)3-x3,解得x.即可得出表面积.

解答 解:由三视图可知:该几何体为一个棱长为2x的正方体
在一个角去掉一个棱长为x的正方体,余下的几何体.
∴该几何体的体积7=(2x)3-x3,解得x=1.
∴该几何体的表面积=6×22=24.
故选:C.

点评 本题考查了正方体的三视图、面积和体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,当点P到点Q的距离与点P到抛物线的准线距离之和最小时,P点的横坐标为(  )
A.$\frac{\sqrt{17}}{8}$B.$\frac{9-\sqrt{17}}{8}$C.$\frac{9}{8}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义域为R的函数f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定义域上为减函数,若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0(k为常数)恒成立.求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}为正项等比数列,a1=2,$\frac{3}{8}$a4是a2和a3的等差中项,Sn为数列{bn}前n项和,2b2=b1+b3,$\sqrt{{S}_{n}}$是公差为1的等差数列.
(1)求数列{nan}的前n项和Tn
(2)求数列{bn}通项公式;
(3)是否存在n∈N*,使Sn=an成立?若存在,求出所有n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx+ax2-x+a(a∈R)在其定义域内有两个不同的极值点.
(1)求a的取值范围.
(2)设f(x)的两个极值点为x1,x2,证明x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上的减函数,其导函数f'(x)满足$\frac{f(x)+xf'(x)}{f'(x)}<1$,则下列结论中正确的是(  )
A.f(x)>0恒成立B.f(x)<0
C.当且仅当x∈(-∞,1),f(x)<0D.当且仅当x∈(1,+∞),f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某中学有篮球社,吉他社,传统文化社,动漫社等多个社团,其中传统文化社借端午节来临之际举行包粽子送祝福活动,随机调查了高三50名男女生对粽子口味的喜好,统计如下表:
  甜味粽 咸味粽 南国风味
 枣子粽豆沙粽  玫瑰粽 蛋黄粽 猪肉粽 什锦粽
 男生 4 3 1 10 4 3
 女生 5 5 5 13
(1)按以上统计数据填写下面的2×2列联表,并运用独立性检验思想,判断是否有97.5%把握认为甜味粽和咸味粽的喜好与性别有关系?
  甜味粽咸味粽  合计
 男生   
 女生   
 合计   
参考公式及临界值表如下:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(2)从被调查的50人中对玫瑰粽和什锦粽喜好的同学按照分层抽样的方法抽取4名同学按顺序进行深度调查,则前两位接受调查的都是喜好玫瑰粽同学的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的奇函数f(x)满足f(2-x)=f(x),当x∈[0,1]时,f(x)=$\sqrt{x}$.又函数g(x)=cos$\frac{πx}{2}$,x∈[-3,3],则函数F(x)=f(x)-g(x)的所有零点之和等于(  )
A.-$\frac{3}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线2ax-by+2=0(a,b∈R)始终平分圆x2+y2+2x-4y+1=0的周长,则ab的最大值是$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案