精英家教网 > 高中数学 > 题目详情
5.tan27°+tan33°+$\sqrt{3}$tan27°tan33°=$\sqrt{3}$.

分析 由tan60°=tan(27°+33°)=$\sqrt{3}$,展开两角和的正切得答案.

解答 解:∵tan60°=tan(27°+33°)=$\frac{tan27°+tan33°}{1-tan27°tan33°}$=$\sqrt{3}$.
∴tan27°+tan33°=$\sqrt{3}$-$\sqrt{3}$tan27°tan33°,
则tan27°+tan33°+$\sqrt{3}$tan27°tan33°=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查两角和的正切,考查灵活变形能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.(1+2x)6展开式中含x2项的系数为(  )
A.15B.30C.60D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设F为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,O为坐标原点,若OF的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为$\frac{2}{3}$|OF|,则双曲线的离心率为(  )
A.$2\sqrt{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$2\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数y=f(x),部x与y的对应关系如下表:
x123456789
y375961824
数列{xn}满足x1=1,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+x3+x4+…+x2017+x2018的值为(  )
A.7560B.7564C.7550D.7554

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义域为R的函数f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定义域上为减函数,若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0(k为常数)恒成立.求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=\frac{1}{{\sqrt{5-x}}}$的定义域为(  )
A.[5,+∞)B.(5,+∞)C.(-∞,5]D.(-∞,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}为正项等比数列,a1=2,$\frac{3}{8}$a4是a2和a3的等差中项,Sn为数列{bn}前n项和,2b2=b1+b3,$\sqrt{{S}_{n}}$是公差为1的等差数列.
(1)求数列{nan}的前n项和Tn
(2)求数列{bn}通项公式;
(3)是否存在n∈N*,使Sn=an成立?若存在,求出所有n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上的减函数,其导函数f'(x)满足$\frac{f(x)+xf'(x)}{f'(x)}<1$,则下列结论中正确的是(  )
A.f(x)>0恒成立B.f(x)<0
C.当且仅当x∈(-∞,1),f(x)<0D.当且仅当x∈(1,+∞),f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.不等式|x-1|≤$\frac{1}{12}$的解集为{x|n≤x≤m}
(1)求实数m,n;
(2)若实数a,b满足:|a+b|<m,|a-b|<n,求证:|b|<$\frac{5}{18}$.

查看答案和解析>>

同步练习册答案