精英家教网 > 高中数学 > 题目详情
15.不等式|x-1|≤$\frac{1}{12}$的解集为{x|n≤x≤m}
(1)求实数m,n;
(2)若实数a,b满足:|a+b|<m,|a-b|<n,求证:|b|<$\frac{5}{18}$.

分析 (1)求出不等式的解集,根据对应关系求出m,n的值即可;(2)根据绝对值不等式的性质证明即可.

解答 解:(1)由|x-$\frac{1}{4}$|≤$\frac{1}{12}$得-$\frac{1}{12}$≤x-$\frac{1}{4}$≤$\frac{1}{12}$,
即$\frac{1}{6}$≤x≤$\frac{1}{3}$,
∵不等式|x-$\frac{1}{4}$|≤$\frac{1}{12}$的解集为{x|n≤x≤m},
∴n=$\frac{1}{6}$,m=$\frac{1}{3}$,
(2)证明:3|b|=|3b|=|2(a+b)-(2a-b)|≤2|a+b|+|2a-b|,
∵|a+b|<m,|2a-b|<n,∴|a+b|<$\frac{1}{3}$,|2a-b|<$\frac{1}{6}$,
则3|b|≤2|a+b|+|2a-b|<2×$\frac{1}{3}$+$\frac{1}{6}$=$\frac{5}{6}$,即|b|<$\frac{5}{18}$.

点评 本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.tan27°+tan33°+$\sqrt{3}$tan27°tan33°=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=x-\frac{1}{x^m}$,且$f(2)=\frac{3}{2}$.
(1)求f(x)的解析式;
(2)证明函数f(x)在区间(0,+∞)上是增函数;
(3)当x∈[-5,-3]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x2-x-2<0},$B=\left\{{x|{{log}_4}x<\frac{1}{2}}\right\}$,则(  )
A.A∩B=∅B.UA∪B=RC.A∩B=BD.A∪B=B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.福利彩票“双色球”中红色球的号码由编号为01,02,…,33的33个个体组成,小明利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第7列数字开始由左到右依次读取数据,则选出来的第3个红色球的编号为(  )
49 54 43 54 15 37 17 93 39 78 87 35 20 96 43 84 17 34 91 64
57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
A.06B.17C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为${S_n}=2{n^2}-1$,数列{bn}的前n项和为Qn=2bn-2.
(1)求数列{an}和{bn}的通项公式;
(2)设${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$α∈(\frac{π}{3},π)$,且$sin(α+\frac{π}{6})=\frac{3}{5}$,则cosα=(  )
A.$\frac{{3-4\sqrt{3}}}{10}$B.$\frac{{3+4\sqrt{3}}}{10}$C.$\frac{{-3-4\sqrt{3}}}{10}$D.$\frac{{-3+4\sqrt{3}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图2所示的程序框图,若输出S=7,则输入k(k∈N*)的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知等腰梯形ABCD中,AD∥BC,BC=2AD=2AB=4,将△ABC沿BD折到△A′BD的位置,使平面A′BD⊥平面CBD.
(Ⅰ)求证:CD⊥A′B;
(Ⅱ)试在线段A′C上确定一点P,使得三棱锥P-BDC的体积为$\frac{4\sqrt{3}}{9}$.

查看答案和解析>>

同步练习册答案