精英家教网 > 高中数学 > 题目详情
20.设数列{an}的前n项和为${S_n}=2{n^2}-1$,数列{bn}的前n项和为Qn=2bn-2.
(1)求数列{an}和{bn}的通项公式;
(2)设${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

分析 (1)数列{an}的前n项和为${S_n}=2{n^2}-1$,可得n≥2时,an=Sn-Sn-1.n=1时,a1=S1=1.可得an.数列{bn}的前n项和为Qn=2bn-2.n≥2时,Qn-1=2bn-1-2,相减可得:bn=2bn-1.n=1时,b1=Q1=2b1-2,解得b1.利用等比数列的通项公式可得bn
(2)${c_n}=\frac{a_n}{b_n}$,n=1时,c1=$\frac{1}{2}$,n≥2时,cn=$\frac{4n-2}{{2}^{n}}$=$\frac{2n-1}{{2}^{n-1}}$.利用错位相减法即可得出.

解答 解:(1)数列{an}的前n项和为${S_n}=2{n^2}-1$,
∴n≥2时,an=Sn-Sn-1=2n2-1-[2(n-1)2-1]=4n-2.
n=1时,a1=S1=1.
∴an=$\left\{\begin{array}{l}{1,n=1}\\{4n-2,n≥2}\end{array}\right.$.
数列{bn}的前n项和为Qn=2bn-2.
n≥2时,Qn-1=2bn-1-2,可得bn=2bn-2bn-1,化为:bn=2bn-1
n=1时,b1=Q1=2b1-2,解得b1=2.
∴数列{bn}是等比数列,首项与公比都为2.
∴bn=2n
(2)${c_n}=\frac{a_n}{b_n}$,
n=1时,c1=$\frac{1}{2}$,n≥2时,cn=$\frac{4n-2}{{2}^{n}}$=$\frac{2n-1}{{2}^{n-1}}$.
∴n=1时,T1=c1=$\frac{1}{2}$.
n≥2时,Tn=$\frac{1}{2}+$$\frac{3}{2}$+$\frac{5}{{2}^{2}}$+…+$\frac{2n-1}{{2}^{n-1}}$.
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n-1}}$+$\frac{2n-1}{{2}^{n}}$.
∴$\frac{1}{2}{T}_{n}$=$\frac{7}{4}$+2×$(\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}})$-$\frac{2n-1}{{2}^{n}}$=$\frac{7}{4}$$+2×\frac{\frac{1}{4}[1-(\frac{1}{2})^{n-2}]}{1-\frac{1}{2}}$-$\frac{2n-1}{{2}^{n}}$.
∴Tn=$\frac{11}{2}$-$\frac{2n+3}{{2}^{n-1}}$.

点评 本题考查了数列递推关系、等比数列的通项公式与求和公式、错位相减法、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=\frac{1}{{\sqrt{5-x}}}$的定义域为(  )
A.[5,+∞)B.(5,+∞)C.(-∞,5]D.(-∞,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设全集U=R,集合A={x|y=lgx},B={x|x2-3x>4},则A∩(∁UB)=(  )
A.{x|0≤x≤4}B.{x|-1≤x≤4}C.{x|-1≤x≤0}D.{x|0<x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知四面体ABCD的顶点都在同一个球的球面上,BC=$\sqrt{3}$,BD=4,且满足BC⊥BD,AC⊥BC,AD⊥BD.若该三棱锥的体积为$\frac{{4\sqrt{3}}}{3}$,则该球的球面面积为23π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.不等式|x-1|≤$\frac{1}{12}$的解集为{x|n≤x≤m}
(1)求实数m,n;
(2)若实数a,b满足:|a+b|<m,|a-b|<n,求证:|b|<$\frac{5}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的焦点到渐近线的距离为$\frac{1}{2}a$,则C的渐近线方程为(  )
A.$y=±\frac{1}{4}x$B.$y=±\frac{1}{3}x$C.$y=±\frac{1}{2}x$D.y=±x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在多面体ABCDE中,△BCD是边长为2的正三角形,AE∥DB,AE⊥DE,2AE=BD,DE=1,面ABDE⊥面BCD,F是CE的中点.
(Ⅰ)求证:BF⊥CD;
(Ⅱ)求二面角C-BF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$,且$\overrightarrow a=({1,0})$,$|{\overrightarrow b}|=1$则$|{\overrightarrow a+2\overrightarrow b}|$=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案