精英家教网 > 高中数学 > 题目详情
9.求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.

分析 因为所求区域均为曲边梯形,所以使用定积分方可求解.

解答 解:由题意知阴影部分的面积是S=${∫}_{0}^{1}$(x2+2-3x)dx+
${∫}_{1}^{2}$(3x-x2-2)dx=($\frac{1}{3}{x}^{3}+2x-\frac{3}{2}{x}^{2}$)|${\;}_{0}^{1}$+
($\frac{3}{2}{x}^{2}-\frac{1}{3}{x}^{3}-2x$)|${\;}_{1}^{2}$=$\frac{1}{3}$+2-$\frac{3}{2}$+6-$\frac{8}{3}$-4-($\frac{3}{2}$-$\frac{1}{3}$-2)=1.

点评 本题主要考查了定积分的实际应用,作出对应的区域,求出积分上限和下限是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知数列{an}中,a1=3,对一切n∈N*,有an>0且an+1=$\frac{{{a}_{n}}^{2}}{2({a}_{n}-1)}$.
(1)求证:an>2且an+1<an
(2)求证:a1+a2+a3+…+an<2(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为${S_n}=2{n^2}-1$,数列{bn}的前n项和为Qn=2bn-2.
(1)求数列{an}和{bn}的通项公式;
(2)设${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\vec a=({1,1})$,$\vec b=(3,m)$,$\overrightarrow a$∥($\overrightarrow a$+$\vec b$),则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图2所示的程序框图,若输出S=7,则输入k(k∈N*)的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$f(x)=\sqrt{3}sinx+cosx$的单调递增区间为$[{-\frac{2}{3}π+2kπ,\frac{π}{3}+2kπ}]({k∈Z})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知a>0,b>0,$\frac{1}{b}$-$\frac{1}{a}$>1.求证:$\sqrt{1+a}$>$\frac{1}{\sqrt{1-b}}$.
(2)已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某人向平面区域$|x|+|y|≤\sqrt{2}$内任意投掷一枚飞镖,则飞镖恰好落在单位圆x2+y2=1内的概率为(  )
A.$\frac{π}{4}$B.$\frac{{\sqrt{3}π}}{4}$C.$\frac{π}{8}$D.$\frac{{\sqrt{3}π}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,已知点A(-a,0)、C(0,b),且S△OAC=1.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,若D(a,0),且|BD|=$\frac{4}{5}$$\sqrt{17}$,求直线l的倾斜角.

查看答案和解析>>

同步练习册答案