精英家教网 > 高中数学 > 题目详情
14.函数$f(x)=\sqrt{3}sinx+cosx$的单调递增区间为$[{-\frac{2}{3}π+2kπ,\frac{π}{3}+2kπ}]({k∈Z})$.

分析 利用辅助角公式化简,结合三角函数的性质可得单调递增区间.

解答 解:函数$f(x)=\sqrt{3}sinx+cosx$=2sin(x+$\frac{π}{6}$),
令$-\frac{π}{2}+2kπ≤x+\frac{π}{6}≤\frac{π}{2}+2kπ$,k∈Z,
得:$-\frac{2π}{3}+2kπ$$≤x≤\frac{π}{3}+2kπ$,
∴函数f(x)的单调递增区为:$[{-\frac{2}{3}π+2kπ,\frac{π}{3}+2kπ}]({k∈Z})$.
故答案为:$[{-\frac{2}{3}π+2kπ,\frac{π}{3}+2kπ}]({k∈Z})$.

点评 本题主要考查三角函数的图象和性质,单调区间的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.等比数列{an}中,a1+a4+a7=3,a3+a6+a9=27,则数列{an}前9项的和S9等于(  )
A.39B.21C.39或21D.21或36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的焦点到渐近线的距离为$\frac{1}{2}a$,则C的渐近线方程为(  )
A.$y=±\frac{1}{4}x$B.$y=±\frac{1}{3}x$C.$y=±\frac{1}{2}x$D.y=±x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{x^2}{2}-\frac{y^2}{a^2}=1$过点(2,-1),则该双曲线的渐近线方程为(  )
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.y=±xD.$y=±\frac{{\sqrt{5}}}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知图一是四面体ABCD的三视图,E是AB的中点,F是CD的中点.
(1)求四面体ABCD的体积;
(2)求EF与平面ABC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC的外心为O,|AB|=2,|AC|=4,M是BC中点,则$\overrightarrow{AO}•\overrightarrow{AM}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,输出的a,b的值分别等于(  )
A.32,-1B.32,$\frac{1}{2}$C.8,1D.8,-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过点(-1,1)的直线l与圆C:x2+y2=4在第一象限的部分有交点,则直线l斜率k的取值范围是(  )
A.(-$\frac{1}{4}$,1)B.(-$\frac{1}{4}$,2)C.(-$\frac{1}{3}$,2)D.(-$\frac{1}{3}$,1)

查看答案和解析>>

同步练习册答案