精英家教网 > 高中数学 > 题目详情
3.执行如图所示的程序框图,输出的a,b的值分别等于(  )
A.32,-1B.32,$\frac{1}{2}$C.8,1D.8,-1

分析 模拟执行框图,依次写出每次循环得到的n,a的值,当n=3时,满足条件,退出循环,输出a,b的值即可.

解答 解:第一步:n=2,a=4;
第二步:n=3,a=32;
第三步:a=32,b=${log}_{\frac{1}{3}}$3=-1,
所以输出a,b的值分别等于32,-1,
故选:A.

点评 本题主要考查了程序框图和算法,依次得到每次循环n,a的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是①②④.(写出所有正确结论的序号)
①?x∈(-∞,1),f(x)>0;
②?x0∈R,使${a^{x_0}}$,${b^{x_0}}$,${c^{x_0}}$不能构成一个三角形的三条边长;
③若△ABC为直角三角形,对于?n∈N*,f(2n)>0恒成立.
④若△ABC为钝角三角形,则?x0∈(1,2),使f(x0)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$f(x)=\sqrt{3}sinx+cosx$的单调递增区间为$[{-\frac{2}{3}π+2kπ,\frac{π}{3}+2kπ}]({k∈Z})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l:(2+m)x+(1-2m)y+4-3m=0,则直线恒过一定点M的坐标为(-1,-2),若直线l与直线x-2y-4=0垂直,则m=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某人向平面区域$|x|+|y|≤\sqrt{2}$内任意投掷一枚飞镖,则飞镖恰好落在单位圆x2+y2=1内的概率为(  )
A.$\frac{π}{4}$B.$\frac{{\sqrt{3}π}}{4}$C.$\frac{π}{8}$D.$\frac{{\sqrt{3}π}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x<2},B={x|$\frac{x}{x-1}$<1}R为实数集,则集合A∩(∁RB)=(  )
A.(-∞,2)B.(-∞,0]C.(1,2)D.(-∞,1-$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若二项式${(x-\frac{2}{x^2})^n}$的展开式共7项,则展开式中的常数项为(  )
A.-120B.120C.-60D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足约束条件$\left\{\begin{array}{l}{y≤-\frac{5}{2}x+9}\\{x≥2}\\{y≥-1}\end{array}\right.$,则z=$\frac{y+2}{x+2}$+1的取值范围是(  )
A.[-$\frac{1}{2}$,$\frac{3}{2}$]B.[$\frac{5}{4}$,$\frac{3}{2}$]C.[$\frac{7}{6}$,$\frac{5}{4}$]D.[$\frac{7}{6}$,$\frac{5}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=e2x-1-2x.
(1)求f(x)的极值;
(2)求函数g(x)=$\frac{lnx}{f(x)-{e}^{2x-1}}$在[1,e2]上的最大值和最小值.

查看答案和解析>>

同步练习册答案