分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;
(2)求出g(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值和最小值即可.
解答 解:(1)f′(x)=2e2x-1-2,
令f′(x)>0,解得:x>$\frac{1}{2}$,
令f′(x)<0,解得:x<$\frac{1}{2}$,
故f(x)在(-∞,$\frac{1}{2}$)递减,在($\frac{1}{2}$,+∞)递增,
故f(x)min=f($\frac{1}{2}$)=0,无极大值;
(2)g(x)=$\frac{lnx}{f(x){-e}^{2x-1}}$=-$\frac{lnx}{2x}$,g′(x)=$\frac{lnx-1}{{2x}^{2}}$,
令g′(x)>0,解得:x>e,令g′(x)<0,解得:x<e,
故g(x)在[1,e]递减,在(e,e2]递增,
故g(x)min=g(e)=-$\frac{1}{2e}$,
∵g(1)=0,g(e2)=-$\frac{1}{{e}^{2}}$,
∴g(x)max=0.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{4}$,1) | B. | (-$\frac{1}{4}$,2) | C. | (-$\frac{1}{3}$,2) | D. | (-$\frac{1}{3}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=±\frac{4}{3}x$ | B. | $y=±\frac{3}{4}x$ | C. | $y=±\frac{3}{5}x$ | D. | $y=±\frac{4}{5}x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x=4k+$\frac{1}{2}$,k∈Z} | B. | {x|x=2k+$\frac{1}{2}$,k∈Z} | C. | {x|x=4k±$\frac{1}{2}$,k∈Z} | D. | {x|x=2k+1,k∈Z} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日期 | 8月1日 | 8月7日 | 8月14日 | 8月18日 | 8月25日 |
| 平均气温(℃) | 33 | 30 | 32 | 30 | 25 |
| 用电量(万度) | 38 | 35 | 41 | 36 | 30 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com