精英家教网 > 高中数学 > 题目详情
2.已知双曲线$\frac{x^2}{2}-\frac{y^2}{a^2}=1$过点(2,-1),则该双曲线的渐近线方程为(  )
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.y=±xD.$y=±\frac{{\sqrt{5}}}{2}x$

分析 利用已知条件求出a,然后求解双曲线的渐近线方程即可.

解答 解:双曲线$\frac{x^2}{2}-\frac{y^2}{a^2}=1$过点(2,-1),
可得2-$\frac{1}{{a}^{2}}$=1,可得a=1,
则该双曲线的渐近线方程为:$y=±\frac{{\sqrt{2}}}{2}x$.
故选:A.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-4x+a+3:
(1)若函数y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(2)设函数g(x)=x+b,当a=3时,若对任意的x1∈[1,4],总存在x2∈[5,8],使得g(x1)=f(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是①②④.(写出所有正确结论的序号)
①?x∈(-∞,1),f(x)>0;
②?x0∈R,使${a^{x_0}}$,${b^{x_0}}$,${c^{x_0}}$不能构成一个三角形的三条边长;
③若△ABC为直角三角形,对于?n∈N*,f(2n)>0恒成立.
④若△ABC为钝角三角形,则?x0∈(1,2),使f(x0)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设实数x,y满足$\left\{{\begin{array}{l}{x≥1}\\{x+y≤5}\\{x-2y≤0}\end{array}}\right.$,则目标函数z=y-lnx的最小值为1-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\vec a=({1,1})$,$\vec b=(3,m)$,$\overrightarrow a$∥($\overrightarrow a$+$\vec b$),则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在区间[-1,1]上任取两数a、b,则使关于x的二次方程${x^2}+2\sqrt{{a^2}+{b^2}}x+1=0$有实数根的概率为$1-\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$f(x)=\sqrt{3}sinx+cosx$的单调递增区间为$[{-\frac{2}{3}π+2kπ,\frac{π}{3}+2kπ}]({k∈Z})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l:(2+m)x+(1-2m)y+4-3m=0,则直线恒过一定点M的坐标为(-1,-2),若直线l与直线x-2y-4=0垂直,则m=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足约束条件$\left\{\begin{array}{l}{y≤-\frac{5}{2}x+9}\\{x≥2}\\{y≥-1}\end{array}\right.$,则z=$\frac{y+2}{x+2}$+1的取值范围是(  )
A.[-$\frac{1}{2}$,$\frac{3}{2}$]B.[$\frac{5}{4}$,$\frac{3}{2}$]C.[$\frac{7}{6}$,$\frac{5}{4}$]D.[$\frac{7}{6}$,$\frac{5}{2}$]

查看答案和解析>>

同步练习册答案