精英家教网 > 高中数学 > 题目详情
7.在区间[-1,1]上任取两数a、b,则使关于x的二次方程${x^2}+2\sqrt{{a^2}+{b^2}}x+1=0$有实数根的概率为$1-\frac{π}{4}$.

分析 根据二次方程根的个数与△的关系,我们易得到关于x的二次方程x2+2 $\sqrt{{a}^{2}{+b}^{2}}$x+1=0的两根都是实数?a2+b2≥1,分别求出在区间[-1,1]上任取两数a、b,对应的平面区域面积,和满足a2+b2≥1对应的平面区域面积,代入几何概型概率计算公式,即可得到答案.

解答 解:若关于x的二次方程x2+2$\sqrt{{a}^{2}{+b}^{2}}$x+1=0的两根都是实数,
则△=4(a2+b2)-4≥0,即a2+b2≥1,
在区间[-1,1]上任取两数a、b对应的平面区域如下图中矩形面积所示,
其中满足条件a2+b2≥1的点如下图中阴影部分所示,

∵S矩形=2×2=4,S阴影=4-π
故在区间[-1,1]上任取两数a、b,
则使关于x的二次方程x2+2$\sqrt{{a}^{2}{+b}^{2}}$x+1=0的两根都是实数的概率P=$\frac{{S}_{阴影}}{{S}_{矩形}}$=1-$\frac{π}{4}$,
故答案为:1-$\frac{π}{4}$.

点评 本题考查的知识点是几何概型,其中分析出关于x的二次方程x2+2$\sqrt{{a}^{2}{+b}^{2}}$x+1=0的两根都是实数?a2+b2≥1是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知α,β∈R,则“α>β”是“α-β>sinα-sinβ”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,圆内接四边形ABCD中,AD=DC=2BC=2,AB=3.
(1)求角A和BD;
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知${log_{\frac{1}{2}}}a<{log_{\frac{1}{2}}}b$,则下列不等式一定成立的是(  )
A.${({\frac{1}{4}})^a}<{({\frac{1}{3}})^b}$B.$\frac{1}{a}>\frac{1}{b}$C.ln(a-b)>0D.3a-b<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{x^2}{2}-\frac{y^2}{a^2}=1$过点(2,-1),则该双曲线的渐近线方程为(  )
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.y=±xD.$y=±\frac{{\sqrt{5}}}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设集合A={x|(x-2)(x-3)≥0},集合B={x|x>0},则A∩B=[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知图一是四面体ABCD的三视图,E是AB的中点,F是CD的中点.
(1)求四面体ABCD的体积;
(2)求EF与平面ABC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.物体运动方程为$S=\frac{1}{4}{t^4}-3$,则t=2时瞬时速度为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知中心在坐标原点的双曲线的一个焦点与抛物线y=-$\frac{1}{4}$x2的焦点重合,且双曲线的离心率等于$\sqrt{5}$,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

同步练习册答案